

5 Centennial Drive, Peabody, MA 01960 (HQ) Tel: 978.532.1900

Tappe Associates, Inc. Weston & Sampson Project No. 2160591

October 14, 2016

Mr. Chris Blessen, Principal Tappe Associates, Inc. Six Edgerly Place Boston, MA 02116

Re: Preliminary Geotechnical Evaluation and Environmental Assessment

Proposed Wayland Public Library at 195 Main Street

Wayland, Massachusetts

INTRODUCTION

Weston & Sampson Engineers, Inc. (Weston & Sampson) is pleased to present this letter report summarizing our preliminary geotechnical evaluation and environmental assessment for the proposed new Public Library at 195 Main Street in Wayland, Massachusetts (the site). The site is currently occupied by the former Town of Wayland Department of Public Works (DPW) facility. Our services were completed in accordance with our August 8, 2016 agreement.

The site includes a portion of the former Town landfill and burn dump area (Wayland Town Dump). Existing site conditions and the approximate footprint of the former landfill (provided by others) are shown in the attached *Figure 1*. It is very important to stress that the site contains an unlined, unregulated landfill and that any development on this property needs to abide by the Massachusetts Department of Environmental Protection (MassDEP) Bureau of Waste Prevention rules for developing an inactive landfill.

The landfill is included on the MassDEP's Inactive & Closed Landfills and Dumping list as the Old Wayland Dump (ID# 169033). Based on the information provided in the list (see copy attached), the landfill is not officially closed and MassDEP Bureau of Waste Prevention Solid Waste Division has jurisdiction over activities on the property. To construct a new library on this property, MassDEP will need to be notified of the proposed work. The Solid Waste Regulations have changed since the original evaluations were done and having a landfill on site might require that certain elements, such as landfill gas, be given more consideration for evaluation and possibly abatement in a new building, if needed. At this point, it is difficult to predict what MassDEP will require and how much of the original landfill evaluation conducted by CDM in 2000 they may accept.

Based on an August 24, 2016 Site Plan prepared by Tappe Architects, Inc. (Tappe), we understand that the preferred location for the new library building is on the west side of the site as shown in Figure 1. We also understand that alternate building locations include the northeast and southeast

areas of the site. Alternate proposed locations are not shown in Figure 1. According to Tappe, the preferred and alternate footprints seek to avoid the former landfill area to the maximum extent possible.

We anticipate that our preliminary assessments will be used to evaluate building locations, potential site layouts, and other considerations for design and construction. Accordingly, specific information including building locations and elevations, site grading, utility depths were not developed at the time of this report. We assume that the existing DPW building will be demolished and a new two-story library building will be constructed in one of the proposed building locations with preference given to the west side of the site.

Select soil samples obtained from the geotechnical borings were screened in the field for the presence of volatile organic compounds (VOCs) with a photoionization detector (PID) and submitted to a testing laboratory for preliminary soil disposal characterization analyses. Environmental test details, results and related environmental considerations for the proposed site development are included in the following sections.

SITE OBSERVATIONS AND CONDITIONS

Surface Conditions

The site is located at the former Wayland DPW facility at 195 Main Street in Wayland, Massachusetts. Based on the site property lines shown in a survey plan provided by the Town, the 195 Main Street property also includes the access road to the Wayland Middle School, which is located immediately east of the site. The site is bordered to the west by Main Street and to the south by a wooded area and residential properties.

The site is currently developed with the former DPW building, storage garage, and asphalt concrete (AC) paved parking, driveway, and yard areas as shown in *Figure 1 – Site Plan*. The south wall of the storage garage and a concrete block retaining wall extending west from the southwest corner of the garage retain up to approximately 5 ft. of grade to the south. A fence and landscape hedges are present between the west side of the yard and Main Street. The southern border of the site is forested with brush and mature trees. Areas between the DPW yard and the school access road to the north and the Middle School to the east are generally landscaped with lawn and trees.

Surface elevations in existing pavement areas surrounding the former DPW building range from El. 160 at a low point northeast of the building to El. 168 at the southwest corner of the yard. Grades increase moderately north, east, and south of the existing yard area to elevations ranging from El. 165 to El. 184 along property lines as shown in Figure 1. Vertical elevations reference the North American Vertical Datum of 1988 (NAVD88).

Geologic Setting

Surficial geology information available from the Massachusetts Office of Geographic Information (Mass GIS) indicates the site is located in an area of coarse grained glacial deposits of sand and gravel overlying glacial till and bedrock at depths of 50 to 100 feet. Bedrock geology is mapped as

quartzite, schist, calc-silicate quartzite, and amphibolite of the Westboro Formation. A bedrock outcrop is mapped approximately 800 ft. northeast of the site immediately east of Keith Road.

Subsurface Explorations

Subsurface conditions were explored on August 8 and 9, 2016, by advancing eight borings (B-1 through B-8) to depths up to 26.0 feet below the existing ground surface (bgs) at the approximate locations shown in the attached *Figure 1 – Site Plan*. The borings were completed by New England Boring Contractors of Derry, New Hampshire using a track-mounted drill rig.

Standard penetration tests (SPTs) and soil sampling were conducted at intervals of 2 to 5 ft. in each boring by driving a 24 in. long by 1-3/8 in. inside diameter (2 in. outside diameter) split spoon sampler with blows from a 140 lb. cathead operated safety hammer falling 30 in. per blow. Hammer blows per 6 inches of sampler penetration (for 24 inches) were recorded. The blow counts for the middle 12 inches are combined and designated as the SPT blow count, which is correlated to soil consistencies and engineering soil properties.

SPT refusal, where noted in the boring logs, is defined as 100 hammer blows for less than 6 inches of sampler penetration. Auger refusal (encountered in B-7) is defined as at least five minutes of auger grinding with no discernable advancement of the auger flights.

Borings B-1, B-3, and B-5 through B-8 were completed using hollow-stem auger (HSA) drilling methods, which are typically faster than other drilling methods for similar soil conditions, but are less suitable for drilling below the groundwater table in sandy soil conditions due to the potential for soil disturbance at the tip of the casing and heaving of soil into the augers when the bottom plug is removed to allow sampling. Heave generally results in inaccurate SPT blow counts, which are critical in determining the relative density (consistency) and liquefaction potential of sands.

Heave was observed during sampling at some depths in B-1 and B-3 as noted in the attached boring logs. Water was added to the auger casing prior to removing the bottom plug to reduce the potential for heave in these and other HSA borings, but heave was still observed at some depths. Borings B-2 and B-4 were completed using cased drive-and-wash drilling methods, which provide more accurate SPT data in saturated granular sands. The SPT blow counts observed in B-2 and B-4 were generally consistent with those observed in the boring completed using HSA drilling methods.

A Weston & Sampson geotechnical engineer monitored drilling activities in the field and prepared logs for each boring. Three environmental samples (composited from material from multiple borings) and individual (grab) samples from each boring were obtained as described below. Subsurface conditions encountered in our explorations are described in the following paragraphs and in the attached **Boring Logs**.

Subsurface Conditions

General - Subsurface conditions encountered in the borings generally consisted of 2.5 to 7 inches of AC in existing pavement areas and 2 to 4 inches of topsoil (in B-7 and B-8) overlying SAND FILL

and native strata of SAND, GRAVEL, and SILTY SAND to the depths explored. The subsurface conditions encountered in the borings were generally consistent with the site history and mapped surficial geology.

The SAND FILL encountered in borings B-1 through B-5 and B-8 extended to depths ranging from 3 ft. to 12 ft., ranged from loose to very dense, and generally contained variable amounts of gravel (trace to gravelly), trace to some silt, and trace to some debris including twine, ash, asphalt fragments, and wood. Fill encountered in B-6 extended to a depth of 7.0 ft. and was similar in composition to the aforementioned borings but generally contained more gravel. Boring B-7 encountered SAND FILL similar to the other borings, but with more debris including glass, wood, metal, and rubber tire pieces. Boring B-7 encountered auger refusal on an obstruction at approximately 12.7 ft. and did not penetrate the fill.

The fill was generally underlain by medium dense to very dense SAND with variable amounts of gravel (gravelly to none) and trace to some silt to the depths explored. A stratum of medium dense to very dense GRAVEL with little to some sand and trace silt was encountered between 9.8 ft. and 24 ft. in B-4, below 17 ft. in B-6, and between 6 ft. and 10 ft. in B-8. Dense SILTY SAND with trace gravel and clay was encountered below a depth of 16 ft. to the depth explored in B-2.

Grinding of augers on possible cobbles or boulders was observed at various depths in the fill and native soils in all borings except B-3. Cobbles were observed in auger cuttings at several borings as noted in the attached Boring Logs. An obstruction was encountered at 15.0 ft. in B-1 and drilling refusal was encountered at 12.7 ft. in B-7 as noted above. Based on the soil boring logs, material indicative of a burn dump/landfill was not observed/encountered with the exception of a trace amount of ash in fill soil and in Boring B-7. The location of soil borings was placed around the former burn dump/landfill area since the Town would like to avoid this area for building construction.

Groundwater – Groundwater was observed in borings B-1, B-3, B-5, and B-6 at depths ranging from 11.0 ft. to 13.5 ft. Groundwater was not measured in B-2 and B-4 due to the use of drive-andwash drilling methods and addition of water to the borehole and was not observed in B-7 and B-8.

We anticipate that groundwater levels will fluctuate with season, variations in precipitation, construction in the area, and other factors. Perched groundwater conditions could exist close to the ground surface, especially during and after extended periods of wet weather.

GEOTECHNICAL CONSIDERATIONS

General

Based on the subsurface conditions encountered in the explorations, the primary geotechnical consideration for the proposed site development and foundation design is the existing undocumented (non-engineered) fill and buried landfill debris. If the alternate building locations on the east side of the site are considered, temporary excavation support may be a consideration depending on the proposed building footprint and elevations relative to existing grades and slopes.

Existing Fill and Debris

The existing undocumented fill and debris observed in all borings up to depths in excess of approximately 13 ft. are not suitable (or allowed by the Massachusetts Building Code) for support of foundations, slabs, or other rigid site improvements that could be adversely affected by differential settlement. The existing fill may provide adequate support of flexible site improvements such as flexible asphalt pavements provided subgrades are adequately prepared and evaluated during construction.

Though not generally observed in the borings, we anticipate that the composition, consistency, and thickness of the fill and landfill debris could be highly variable. It also appears that landfill debris is present at the location of B-7, which is outside the previously defined landfill limits as shown in Figure 1. Additional explorations are recommended as described below to evaluate the extent and thickness of areas of undocumented fill/buried debris and evaluate the most economical foundation alternative or combination of alternatives.

Re-use of existing inorganic fill and native soils suitably free of debris or other deleterious materials and up to approximately 10 percent fines (passing the No. 200 sieve) as Common Borrow and/or Structural Fill may be feasible if properly constructed, monitored, and documented. Fill variability and suitability for re-use should be evaluated by additional explorations and laboratory testing.

FOUNDATION ALTERNATIVES

General

As described above, all borings encountered undocumented fill and buried debris up to depths in excess of approximately 13 ft. and these materials are not suitable for support of foundations or other rigid site improvements. Foundation alternatives therefore include complete removal (over-excavation) of the existing fill/debris and replacement with structural fill and in-situ ground improvement. Based on the fill depths and general composition observed in the borings (excluding the debris observed in B-7), deep foundations will not be an economic alternative to ground improvement.

In areas where native soils are present within a few feet below proposed foundations and slabs, over-excavation and replacement may be the most economical alternative from a geotechnical standpoint. Where the fill and debris extends greater than a few feet below the bottom of footing and slab elevations, ground improvement will likely be more economical. Environmental considerations, such as handling and disposal of surplus debris and impacted soils, may make ground improvement more feasible and economically attractive than over-excavation and replacement, even for shallow fill depths.

Additional geotechnical and environmental explorations, sampling, and analyses will be required in areas of proposed foundations and earthwork (including new parking areas) to further evaluate fill thicknesses, soil/groundwater impacts, and the most cost-effective foundation alternative. On-site reuse of excavated fill materials should be evaluated to reduce costs associated with off-site export.

Over-Excavation and Replacement

In areas where native soils are present within several feet of proposed bottom-of-footing and slab subgrade elevations, the fill could be removed to expose undisturbed native soils and the resulting excavations brought back to proposed grades with structural fill. Over-excavation limits should include the entire zone-of-influence (ZOI) beneath proposed site improvements, which is defined by a plane extending horizontally away from the bottom edges of footings, utilities, and other existing and proposed site improvements a distance of two feet in all directions, then down and away at 1H:1V slopes.

Ground Improvement

Ground improvement involves installation of elements in the existing fill within the ZOI beneath proposed shallow footings, slabs, and other rigid site improvements to improve the soil bearing capacity and limit settlement to acceptable tolerances. Improvement is done in-place and typically without generating significant spoils, which can be a distinct advantage where removal of soils would require special handling and off-site disposal.

Based on the fill composition observed in all borings except B-7, ground improvement at this site can likely be achieved using compacted stone columns (CSC), also known the trademarked names Geopiers[™] (Geopier Foundation Company) and Vibro Piers[™] (Hayward Baker). Additional explorations should be completed to evaluate the presence of debris, obstructions, organics, and other subsurface conditions that could complicate installation of ground improvement elements.

We recommend that a ground improvement designer/contractor be consulted during design development to confirm feasibility and assist with preliminary cost estimating. The ground improvement designer/contractor will design and install ground improvement elements based on the requirements of a performance based specification (minimum bearing capacity and maximum allowable settlement) prepared by the geotechnical engineer and included in the contract documents. The ground improvement designer may request load information from the structural engineer to optimize the ground improvement design.

Preliminary Foundation Design

Conventional shallow foundations, slabs on-grade, and other rigid site improvements can be supported by undisturbed medium dense (or denser) native sand and gravel, properly constructed structural fill overlying suitable native soils, or by the existing fill following properly designed and constructed ground improvement. An allowable bearing pressure of 4,000 psf can be used for preliminary design of spread footings supporting the building type described above. The allowable bearing pressure can be increased to 6,000 psf to resist temporary wind and seismic loads provided load eccentricities are within the middle third of the footing. Footings should be embedded at least 4 ft. below the nearest proposed adjacent ground surface exposed to freezing.

Additional geotechnical explorations and analyses will be required to evaluate settlement of foundations and slabs and provide recommendations for design and construction of shallow foundations.

PRELIMINARY ENVIRONMENTAL SUMMARY AND RESULTS

As discussed above, the site contains an unlined, incompletely capped landfill according to MassDEP's list of Inactive & Closed Landfills and Dumping. MassDEP will need to be notified of any proposed work at the site and to evaluate potential design and construction considerations. Background and historical information reviewed as part of our assessment included the following:

- Report titled "Wayland Highway Department, Environmental Investigation of Former Wayland Town Dump," prepared by Camp Dresser & McKee (CDM), dated February 2000 (revised March 2000).
- Letter titled "Claypit School Remedial Action Pursuant to MGL Chapter 21E," from the Massachusetts Department of Environmental Quality Engineering (DEQE) to Wayland Public Schools, dated August 17, 1988.
- Untitled letter regarding the 1988 remedial action at the Claypit School from Wayland Public Schools to the Massachusetts Department of Environmental Protection, dated May 9, 1994.

Review of Prior Environmental Reports for the Property

Weston & Sampson conducted a review of the MassDEP online searchable sites database to evaluate if prior releases of oil/hazardous materials (OHM) occurred at the property. The site address of 195 Main Street was input into the database, which returned one record associated with an observation of petroleum sheen on water in the site storm drainage system in 1998. This condition represented a two-hour notification condition to MassDEP.

Response Action Outcome (RAO) Report – 1999

The release was assessed by the Cygnus group who collected soil, sediment, surface water and groundwater samples. Petroleum concentrations detected in soil were below the most restrictive Method 1 S-1 cleanup standards. Petroleum related constituents were not detected in surface water from the downgradient wetlands and wetland sediment results indicated that site conditions were consistent with background. Only methyl tert-butyl ether (MTBE), an anti-knocking additive to gasoline, was detected in one groundwater sample from three locations at the Site. The detected MTBE concentration was well below the most restrictive Method 1 groundwater cleanup standard (GW-1). Therefore, remediation activities were not required for the release and a class B-1 RAO was submitted to MassDEP in May 1999. In 2001, subsequent to the submittal of the RAO report, MassDEP requested that the Town sample the site groundwater monitoring wells for VOC analysis. The Town retained the Cygnus Group to sample the wells and VOCs were not detected in any of the groundwater samples.

Within the RAO report, a summary of historical environmental conditions of the site was also provided including a description of the vertical and horizontal extent of the landfill as provided below:

"A portion of the property, beginning on the north side of the access drive to the adjacent Junior High School, extending south beneath the driveway to the vicinity of the existing single-story building on the Site was formerly used as the Town of Wayland landfill. Little or no documentation

was found regarding the former landfill. According to Town officials, the landfill operated in this location from the early 1900's until 1958. The landfill was used almost exclusively for disposal of domestic refuse. Little or no commercial refuse was disposed in the landfill. The disposed refuse was periodically burned. The landfill was reportedly unlined. The horizontal and vertical extent of landfill material is not known. Based upon the recollection of town officials, and upon a review of aerial photographs dated 1942 and 1958, the landfill is believed to have extended from the vicinity of the Highway Department Garage north across the Junior High School access road, and to the east, beneath the current Junior High School parking area. The vertical extent of landfill material is thought to be approximately four to ten feet below ground surface in the area near the catch basins, based upon test borings conducted in 1980 and a test pit dug in 1994."

In addition to the landfill description above, the RAO report stated that several hundreds of virgin-petroleum impacted soil was used as landfill cover material in the eastern portion of the landfill. Three to six feet of sand and gravel was placed above the petroleum impacted soil, which was asphalt paved at the surface. Four former leaching pits associated with bay drains in the building were excavated in 1996 as part of MassDEP's Underground Injection Control program. Petroleum impacted soil was discovered above Reportable Concentrations for S-1 areas beneath the injection pits. This soil was excavated and disposed offsite under a Limited Removal Action (LRA), which means the volume of soil disposed was less than 100 cubic yards. The RAO reported that "Three 10,000-gallon gasoline and diesel fuel USTs, and two 3,000 gallon USTs used to store #2 fuel oil

and waste oil were excavated and removed from the Site in March 1997". Field screening by PID and laboratory analysis of excavation soil samples did not indicate any evidence of petroleum contamination of soil in the vicinity of the former USTs. The locations of the former leaching pits and USTs were not provided in the RAO report.

<u>CDM – Environmental Investigation of Former Town Dump,</u> February 2000

The limits of the former Town Dump (landfill) were assessed using an electromagnetic (EM) survey. The report indicates that there are four areas of waste; two landfill pits are located in the field adjacent to the Highway Department Parking Area, one long continuous disposal area in the parking area and adjacent street, and the southeast edge of the parking area is the fourth area as shown in *Figure 2*. This report also contains results of a soil gas survey for VOCs and landfill gases including hydrogen sulfide, lower explosive limit, carbon dioxide, oxygen and methane. Based on the results, gas concentrations were not elevated above regulatory levels nor were they migrating toward the Highway Department Building.

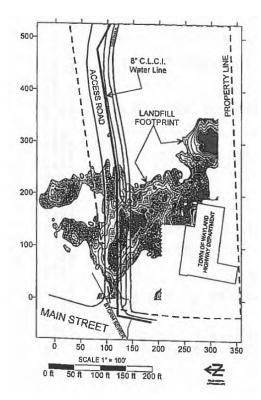


Figure 2 - EM Survey (CDM, 2000)

Letter to MassDEP, May 1994

A May 1994 letter to MassDEP for the Town of Wayland was reviewed describing a Notice of Responsibility issued by MassDEP related to a virgin petroleum spill at the Claypit Hill School. The letter described that the spill was remediated by mixing the impacted soil in a pugmill/asphalt emulsion/batching process and using the resulting asphalt to pave the Highway department parking lot. The letter contained an approval for this activity from MassDEP dated August 17, 1988.

PRELIMINARY ENVIRONMENTAL INVESTIGATION

The preliminary environmental investigation was developed to assess soil quality in areas of the site away from the former landfill present in the subsurface of the property. The new library design will also take care to avoid contacting waste associated with the landfill as much as possible. Soil borings were located around the landfill extent to assess surplus soil that could be generated during construction of the new library. The approximate extent of the landfill is shown in Figure 2.

As described above, subsurface conditions were explored on August 8 and 9, 2016, by advancing eight borings (B-1 through B-8) to depths up to 26.0 feet below the existing ground surface (bgs) at the approximate locations shown in the attached *Figure 1 – Site Plan*. During soil boring advancement, soil was field screened for the presence of VOCs using a properly calibrated PID. Headspace readings indicated very low levels of VOCs in soil (less than 3.6 parts per million by volume) that would not be a concern for soil management during construction. In addition, soil was observed for evidence of potential impacts including odor, sheen or unnatural staining. Evidence of impacts were generally not observed with the exception of trace to little debris and ash in several borings with the exception of B-7, which encountered landfill debris. Based on the soil boring logs and observations, domestic refuse was not encountered in the soil borings conducted during this investigation. PID measurements and observations of impacts are noted in the attached Boring Logs.

A total of three composite soil samples were collected from the fill material observed in the soil borings to evaluate soil quality of potential surplus soil that may be generated during construction. Sample C-1 was collected from borings B-1 and B-2, C-2 was collected from borings B-3 and B-4, and C-3 was collected from borings B-5, B-6, and B-7. Individual grab samples were also obtained from each boring for VOC analysis to prevent volatilization associated with sample compositing. Sampling depths are noted in the Boring Logs. The composite samples were submitted for disposal characterization analyses consistent with Massachusetts Department of Environmental Protection (MassDEP) Policy# COMM-97-001 including volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), RCRA-5 metals, and conductivity. Since these soil samples were composited over the full depth of observed fill, soil concentrations within in discrete intervals of the fill may contain higher or lower concentrations. Weston & Sampson recommends a more detailed investigation during the design stage to further assess areas of potential surplus soil generation during construction.

Based on the laboratory results summarized in the attached *Table 1*, only one polycyclic aromatic hydrocarbon (PAH), 2-methylnapthalene in Sample C-2 (composite sample from borings B-3 and

B-4), exceeded the applicable Reportable Concentrations (RCS-1) for the site. However, PAHs are typically associated with the presence of coal, coal ash or wood ash. Coal was identified/documented by Microvision Laboratories who analyzed the soil matrix from this sample (C-2) and this concentration is therefore exempt from notification in accordance with the MCP 310 CMR 40.0317(9). A copy of the Microvision lab report is attached. Other PAHs and low concentrations of metals (most likely naturally occurring and below RC S-1) were detected in all soil samples. Total Petroleum Hydrocarbons were also detected in all samples at concentrations below the applicable Reportable Concentrations. The concentrations of PAHs and TPH in site soil will require surplus soil management either on site, at a suitable offsite reuse facility in accordance with the MassDEP guidance document entitled *Similar Soils Provision Guidance* (WSC#-13-500), or disposal/recycling at an offsite facility such as a landfill or asphalt batching facility.

ADDITIONAL EXPLORATIONS AND ANALYSES

As described above, additional explorations are recommended to further evaluate the presence, composition, and thickness of undocumented fill and debris underlying proposed site improvements, the presence of obstructions in the fill, and feasibility of ground improvement. Additional explorations will also provide samples for additional environmental and geotechnical laboratory testing to further evaluate potential contamination and re-use of on-site soils as fill. Additional information and analyses will be critical in evaluating the most cost effective approach to site development, earthwork, and foundation construction as well as surplus soil management during construction. Once the design is close to final, we could precharacterize areas of surplus soil generation and identify appropriate disposal facilities for the contractor. We also recommend installation and sampling of groundwater monitoring wells to assess dewatering alternatives as well groundwater quality from an environmental standpoint. In addition, we recommend soil gas screening in the area of the final building location to assess potential vapor intrusion from the landfill. We understand that 2000 CDM report screened vapors at that time, but recommend redoing the screening at this time to account for current conditions and gas meter technology improvements.

We recommend that additional explorations include test pits to further define the lateral extent and composition of the fill materials. Test pits are preferable to borings for these purposes as they allow for better visual observation of shallow subsurface conditions than borings. Additional borings may be required depending on the proposed site layout, building type (loads), elevations, grading, and if the fill encountered in the test pits extends deeper than the limits of excavation equipment. Since the site contains an unlined landfill, construction should avoid any contact with the landfill waste or the clean fill placed above it. Should the final design require work over the landfill, including grading, light poles, utilities, paving etc., this work should be coordinated with MassDEP Bureau of Waste Prevention since the landfill is in their jurisdiction.

LIMITATIONS

We have prepared this preliminary feasibility study for use by Tappe Associates, Inc. and the design and construction teams for this project only. The information herein may be used for preliminary cost

estimating and/or alternative analyses, but is not considered sufficient for design or bidding and should not be construed as a warranty of subsurface conditions. Additional geotechnical explorations and analyses will be required for final design once project details including, but not limited to, site layout, grading, and proposed structure type(s), configurations, and elevations are determined.

We have made observations only at the aforementioned locations and only to the stated depths. These observations do not reflect soil types, strata thicknesses, water levels or seepage that may exist between observations. Within the limitations of scope, schedule and budget, our services have been executed in accordance with the generally accepted practices in this area at the time this report was prepared. No warranty, expressed or implied, is given.

It has been a pleasure assisting you with this project and we look forward to our continued involvement. Please call if you have any questions.

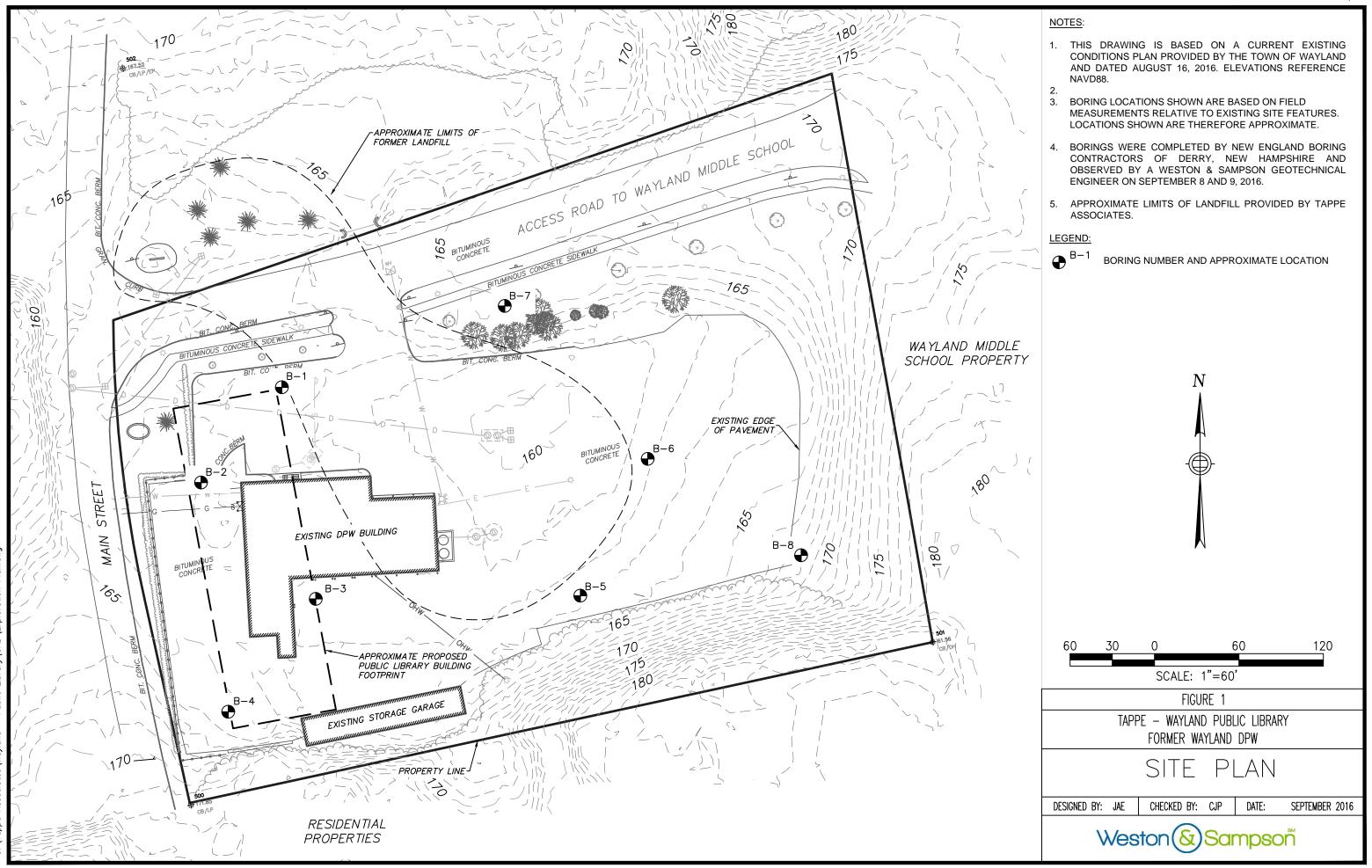
Very truly yours,

WESTON & SAMPSON, INC.

Christopher J. Palmer, PE

Geotechnical Team Leader

Frank Ricciardi, PE, LSP


Vice President

Attachments:

- Site Plan
- Boring Logs (8 pages)
- MassDEP Inactive & Closed Landfills and Dumping List (2 pages)
- Table 1 Soil Analytical Results (1 page)
- Laboratory Report Package (56 pages)
- Microvison Lab Report

O:\Tappe Associates\Millis, MA - Clyde Brown School\PM\DRAFT Feasibility Study - Clyde Brown School - Millis, MA.doc

	We	stor	n&S	Samps	son sm	W	ayland Libr	JECT d Public ary nd, MA	REPO	RT OF BORING SHEET Project No. CHKD BY	1		B-1 OF 1 160591 er J. Palmer, PE
BORIN FOREM WSE E			New Engl	and Boring Matt Souc Julie A. Ea			GRO	ING LOCA UND SURI E START			See atta El. 16 DATE	32 +/-	plan DATUM <u>NAVD88</u> 9/8/16
SAMPL	FR·	2 IN OD 6	DLIT SDOON SAMD							GROUNDWAT	ER RE	ΔΟΙΝ	GS
OAWII L	LIX.		PLIT SPOON SAMP 40 lb. CATHEAD O					DATE	TIME	WATER AT	CASIN		STABILIZATION TIME
CASING	G:		STEM AUGER DRIL					9/8/2016		12 ft. +/-	15		
		TRACK RIG	G										
CASING	SIZE:	4 1/4 IN. IN	ISIDE DIAMETER.		OTHER:								
DEPTH	CASING			SAMPLE		PID		SAMPLE	E DESCR	IPTION	NOTES	STF	RATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)	\						
0		S-1	2/18	0.5-2	15-42-29	0.1	-	ense, brown, Iebris (asphal		LL, some gravel,	1	7"	AC PAVEMENT
		S-2	7/24	2-4	14-11-10-6	0.2		` '	*	FILL, little gravel,			
		0.2	1/24	2-4	14-11-10-0	0.2		silt, trace debr					
5 –		S-3	4/24	4-6	11-15-14-12	0.2		m dense, brov silt, trace debr		FILL, little gravel, lt); moist.			
		S-4	1/24	6-8	20-23-9-7	0.6		, brown SANI (cobble fragn	,	ace silt, some); moist.			SAND FILL
		S-5	4/24	8-10	1-5-2-3	0.4		dark brown, trace debris		L, some silt, trace ash); moist.	2		
10 –		S-6	6/24	10-12	6-7-12-8	0.3		m dense, darl ce debris (fib		AND FILL, some e gravel; wet.			
		S-7	9/9	12-12.8	38-50/3"	0.5		, brown, fine tavel; wet.	to coarse	SAND, some silt,	3 4,5		
15 –		S-8	7/24	15-17	59-39-58-59					fine to coarse			
							SAND	, trace silt; we	t.				
20 –													SAND
20		S-9	7/24	20-22	9-29-40-44			ense, brown- , trace silt; we		elly, fine to coarse	6		
25 –							Boring	terminated a	t 25.0 ft.		7		
30													
	GRANU	LAR SC	DILS	COHES	SIVE SOILS	NOTE	S:						
BLO\	WS/FT		ENSITY	BLOWS/FT	DENSITY	1		ling from 0 to	13.0 ft. C	obbles and coarse	gravel o	bserve	d in cuttings.
4- 10 30)-4 -10)-30)-50 50	M.	LOOSE .OOSE DENSE DENSE DENSE	0-2 2-4 4-8 8-15 15-30 > 30	SOFT M. STIFF STIFF V. STIFF	3. Com 4. Aug 5. Spo 6. 1.5 f	posite ers tilte adic au t. of he	d on obstructi uger grinding ave observed	al sample ion. Move from 13.0 I. Added	taken from 0 to 12.ed ~5 ft. west and re	e-drilled I uger fligh	nole to	15.0 ft.
GENERA	L NOTES:	ii) WATE	R LEVEL READI	NGS HAVE BEE HE LEVEL OF G	ENT THE APPROXIM N MADE IN THE DRII ROUNDWATER MAY	LL HOLE	S AT TI	MES AND UND	ER CONE	ITIONS STATED ON	THIS BO	RING LO	

	We	stor	n&\S	Samps	son s _m		aylan Libi	JECT d Public ary nd, MA	С	REPO	RT OF BORING SHEET Project No. CHKD BY	1		B-2 OF 1 160591 er J. Palmer, PE
BORIN FOREM WSE E			New Engl	and Boring Matt Souc Julie A. Ea			GRO	ING LC UND S E STAF	URF			See atta El. 16 DATE	64 +/-	plan DATUM <u>NAVD88</u> 9/8/16
SAMPL	FR [.]	2 IN OD S	PLIT SPOON SAMP	I FR (SPT) DRIVE	N 24 INCHES						GROUNDWAT	FR RE	ADIN	GS
o, <u>-</u>			40 lb. CATHEAD O				i)	DAT	Έ	TIME	WATER AT	CASIN		STABILIZATION TIME
CASING	3 :	DRIVE ANI	D WASH DRILLING	METHODS			_							
		TRACK RIG	G				· i							
CASING	SIZE:	4 1/4 IN. IN	ISIDE DIAMETER.		OTHER: See note	3.	i							
DEPTH	CASING			SAMPLE		PID		SAN	MPI F	DESCR	IPTION	NOTES	STR	ATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)		O/ 11	***	DECON				
0		0.4	0.10.4	4.0	10.00.11.10	- 1	., .					1	4"	AC PAVEMENT
		S-1	3/24	1-3	16-29-41-48	0.1		ense, da some gra			to coarse SAND			
		S-2	14/24	3-5	46-50-33-75	0.4		•			elly, fine to coarse	2		SAND FILL
		3-2	14/24	3-3	40-30-33-73	0.4	,	FILL, tra		, 0	•	2		
5 –		S-3	5/24	5-7	67-33-31-30	0.2	Very d	ense, ligl	ht bro	own, grav	elly, SAND, trace			
				-			silt; mo	oist. Botto	om 3'	' little gra	vel.			
		S-4	5/24	7-9	29-20-17-17	0.1			,		arse SAND, some			
							•	, trace to		•				
10		S-5	13/24	9-11	18-17-14-12	0.2		, brown, trace sil			SAND, little			SAND
							graver	, trace sii	it, mo	ISI.				
												3		
		S-6	7/24	14-16	15-12-10-12		Mediu	m dense.	. brov	vn. fine S	AND, little to			
15		00	1727	14 10	10 12 10 12			silt; wet.	,	,	,			
														_
												4		
20		S-7	13/24	19-21	16-22-17-22						n SILTY SAND,			SILTY SAND
20							trace of to grav		ace cl	ay; wet.	Bottom 6": grades			OILT TOAND
							to gra	Cily.						
		S-8	0/24	24-26	10-8-22-15		Dense	no reco	verv	Cobble t	ragment in tip of			
25 –		0.0	0/24	24-20	10-0-22-13		spoon			0000.0				
							Boring	terminat	ted at	26.0 ft.				
30														
	GRANU	LAR SC	DILS	COHES	SIVE SOILS	NOTI	S:					-		
BLO\	WS/FT	D	ENSITY	BLOWS/FT	DENSITY	1. Aug	er grind	ling from	0 to	5.0 ft. Co	ontinuous sampling	from 5.0	ft. to 1	1.0 ft.
-)-4		LOOSE	0-2	V. SOFT	No a	augers	advanced	d fron	n 5 ft. to	11.0 ft.			
	-10	_	OOSE.	2-4			•				taken from 0 to 11			
)-30 \ 50		DENSE	4-8							g methods with 4 ir		-	
)-50 50		DENSE DENSE	8-15 15-30	STIFF V. STIFF	4. Roll	er bit gr	inding tro	om 18	3.U TT. TO	19.0 π. Sporadic ro	oller bit gr	inaing t	rom 19.0 ft. to 24.0 ft.
	50	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DEINOL	> 30	HARD									
				<u> </u>										
GENERA	L NOTES:	i) THE S	TRATIFICATION	LINES REPRES	ENT THE APPROXIM	MATE BO	UNDAF	Y BETWE	EN S	OIL TYPE	S. TRANSITIONS M	IAY BE GF	RADUAL	
		ii) WATE	R LEVEL READII	NGS HAVE BEE	N MADE IN THE DRI	LL HOLE	S AT T	MES AND	UND	ER CONE	DITIONS STATED ON	THIS BO	RING LO	OG.
					ROUNDWATER MAY	OCCUF	DUE T	O OTHER	FACT	TORS TH	AN THOSE PRESEN	T AT THE	TIME	
		MEAS	SUREMENTS AR	E MADE.								DODIN	O N -	B-2
												BORIN	UNO.	D-Z

	We	stoı	n&S	amps	son sm	W	aylan Libi	JECT d Public rary nd, MA	REP	ORT OF BORIN SHEET Project No. CHKD BY	1	2	B-3 OF 1 160591 er J. Palmer, PE
BORIN			New Engl		Contractors			ING LOC			See atta		
FOREN	MAN NGINEEI	.		Matt Souc				UND SUI E START		ELEV. 9/8/16	El. 16 DATE		DATUM <u>NAVD88</u> 9/8/16
											_		
SAMPL	.ER:		PLIT SPOON SAMP 40 lb. CATHEAD OI				•	DATE	TIME	GROUNDWA' WATER AT	CASIN		STABILIZATION TIME
CASIN	G:		STEM AUGER DRIL					9/8/201		13.5 ft. +/-	15		
0.4.0.14.0	. 0.75	TRACK RIG					•						
CASING		4 1/4 IN. IN	ISIDE DIAMETER.		OTHER:						 		
DEPTH (feet)	CASING (blows/ft)	No.	REC/PEN (in)	SAMPLE DEPTH (ft)	BLOWS/6"	PID (ppm)		SAMP	LE DESC	CRIPTION	NOTES	STF	RATUM DESCRIPTION
0	(2.2.1.5.1.5)					(/						4"	AC PAVEMENT
		S-1	17/24	1-3	19-26-15-17	0.5				se SAND FILL, little ris (asphalt); moist.	1		SAND FILL
		S-2	11/24	3-5	14-9-7-10	0.3		m dense, br avel, trace		e to coarse SAND,			
5 –		S-3	14/24	5-7	7-7-7-7	0.6				to coarse SAND,	2		
		00	1-02-1	0 7		0.0		silt; moist.	,	,,			
10 –		S-4	16/24	10-12	6-10-11-9			,	own, fine	e to coarse SAND,			SAND
							trace s	silt; moist.					
45													
15 –		S-5	17/24	15-17	7-11-11-8					, fine to coarse	3		
								, trace to litt			┨ ,		
							Boring	terminated	at 17.01	τ.	4		
20 –													
20													
25 –													
30 –													
	GRANUI				SIVE SOILS	NOTI	S:						
	WS/FT)-4		LOOSE	BLOWS/FT 0-2	DENSITY V. SOFT	1				e SAND, trace grave			
	- 1 0		OOSE.	2-4	SOFT		•			le taken from 0 to 7. casing while pulling p			
)-30		DENSE	4-8	M. STIFF	4. Atte	mpted t	to take a sa	mple at 1	7.0 ft.; 5.0 ft. of hea	ve observ	ed. Bor	ing teerminated
)-50 50		DENSE DENSE	8-15 15-30	STIFF V. STIFF	with	out san	npling.					
	50	٧.	PLINGE	> 30	V. STIFF HARD								
CENIED A	LNOTES	i) THE C	TDATIFICATION	INES DEDDES	ENT THE ADDROVA	4ATE D.	VI INID A T	OV DETME-*	1001 71	DEC TRANSPIONS	MAY DE CE	DADUA.	
GENEKA	L NOTES:									PES. TRANSITIONS I NDITIONS STATED O			
										HAN THOSE PRESEN			
		MEAS	SUREMENTS AR	E MADE.							BORIN	G No	B-3
											POLIN	J 14U.	D-0

	We	stor	n & S	ampe	SON		Libr	d Public	REPO	RT OF BORING SHEET Project No. CHKD BY	1	B-4 1 OF 1 2160591 istopher J. Palmer, PE
BORIN	G Co.		New Engl	and Boring	Contractors		BOR	ING LOCA	TION	(See atta	ached plan
FOREM	1AN NGINEEI	₹:	•	Matt Souc	,			UND SUR E START	FACE E	LEV. 9/8/16	El. 169	5.5 +/- DATUM <u>NAVD88</u> END 9/9/16
SAMPL	ER:	2 IN. OD SE	PLIT SPOON SAMP	LER (SPT) DRIVE	N 24 INCHES		-		-	GROUNDWAT	ER RE	ADINGS
			40 lb. CATHEAD OF				•	DATE	TIME	WATER AT	CASIN	1
CASING	3 :		WASH DRILLING	METHODS								
CASING	SIZE:	TRACK RIG	SIDE DIAMETER.		OTHER: See note	3						
DEPTH	CASING	4 1/4 110. 110		SAMPLE	OTTILITY. See Hote	J. PID	I					
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPL	E DESCR	RIPTION	NOTES	STRATUM DESCRIPTION
0											1	4" AC PAVEMENT
		S-1	7/24	1-3	24-33-18-13	1.3	-			ND FILL, some trace silt; moist.		
		S-2	2/24	3-5	11-11-11-23	1.3				SAND FILL, little		SAND FILL
_		0.2	ZIZT	0-0	11-11-11-20	1.0				trace silt; moist.		
5		S-3	8/24	5-7	21-27-36-42	3.6				velly, fine to coarse	2	
		C 4	15/10	705	E4 67 400/6"	0.2		trace to little	,		_	
		S-4	15/18	7-8.5	51-67-100/6"	0.3	-	avel, little sil		to coarse SAND,	3	SAND
10		S-5	4/10	9-9.8	68-100/4"		-			fine to coarse	4, 5	
10							SAND	, some silt; w	et.			
15 –		S-6	7/24	14-16	41-76-39-32		Very d	ense, brown	GRAVEL	., little sand, trace		GRAVEL
15							silt; we	et. Bottom 4":	gray, cob	ble fragments.		GRAVEL
20		S-7	0/24	19-21	49-27-24-22		Very d	ense, no rec	overy.			
20												
25 –		S-8	8/24	24-26	27-18-15-20					SAND, some		SAND
								little silt; we				
							Boring	terminated a	at 26.0 ft.			
30							1					
							1					
	OD A F II II	AD 00	VII C	00115		NOT:	<u> </u>					
	GRANUI NS/FT		ENSITY	BLOWS/FT	DENSITY	NOTI		ling from 0 to	5.0 ft Co	ontinuous sampling	from 5 0) ft. to 9.0 ft.
)-4		LOOSE	0-2	V. SOFT	1		advanced fro			110111 0.0	71t. to 0.0 ft.
	-10		OOSE	2-4	SOFT						ft. Grab	sample taken from S-3.
)-30)-50		DENSE ENSE	4-8 8-15	M. STIFF STIFF		_	ment observ	•	•		~ ~ 0 0 %
	50 50		DENSE	15-30	V. STIFF					g methods with 4 ir 2.0 ft. Sporadic roll		g at 9.0 it. nding from 12.0 ft. to 24.0 ft.
	-			> 30	HARD		9.				3	5
CENED^	I NOTES:	i) THE 67	PATIEICATION	INES PEDDES	SENT THE APPROXIM	MATE DO	JI INID V D	V DETWEEN	SUI TADE	C TDANICITIONS M	IAV DE CE	DADIIAI
JUNERA	L INUTES.				ENT THE APPROXING							
					ROUNDWATER MAY							
		MEAS	UREMENTS ARI	E MADE.							D0=::	D 4
											BORIN	IG No. B-4

	We	stor	n&S	Samps	son sm	W	Libr	d Public	REPO	RT OF BORING SHEET Project No. CHKD BY			B-5 OF 1 160591 er J. Palmer, PE
BORING FOREM WSE E		₹:	New Engl	and Boring Matt Souc Julie A. Ea			GRO	ING LOCA UND SUR E START			See atta El. 16 DATE	3 +/-	plan DATUM <u>NAVD88</u> 9/9/16
SAMPL	FR·	2 IN OD 8	PLIT SPOON SAMP	I ED (SDT) DDIVE	N 24 INCHES					GROUNDWAT	FR RE	ADIN	GS
O/NVII L	LIV.		40 lb. CATHEAD O				•	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME
CASING	3 :		STEM AUGER DRIL					9/9/2016		11.0 ft. +/-	20	ft.	upon termination.
		TRACK RIG	G				:						
CASING	SIZE:	4 1/4 IN. IN	ISIDE DIAMETER.		OTHER:		i						
DEPTH	CASING			SAMPLE		PID		SAMPL	E DESCR	IPTION	NOTES	STF	RATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)						2.5	" AC PAVEMENT
U		S-1	18/24	1-3	30-25-15-13	0.3	Dense	, dark brown,	gravelly	SAND FILL, some	1	2.5	
				. 0	00 20 10 10	0.0		(asphalt), tra					SAND FILL
		S-2	8/24	3-5	11-16-13-15	0.5				o medium SAND,	2		
5								ravel, trace s					
		S-3	13/24	5-7	7-11-10-15	0.2		m dense, bro ravel, trace s		o coarse SAND,			
		S-4	12/24	7-9	16-25-23-17		_			SAND, some	2.4		
		3-4	12/24	7-9	10-25-25-17			trace silt; m		SAND, Some	3, 4		
40													
10		S-5	4/24	10-12	6-7-8-5					elly, fine to coarse			
							SAND	trace to little	silt; wet.				
													SAND
15		S-6	14/24	15-17	6-14-20-21		Dense	brown fine	to coarse	SAND, some	5		
		3-0	17/27	15-17	0-14-20-21			trace silt; we		o,, come	3		
20							Dense	, brown, fine	to coarse	SAND, little			
		S-7	11/24	20-22	9-14-17-16			trace to little	silt; mois	t. Bottom 2"	6		
								to gravelly. terminated a	t 22 0 ft				
							Donnig	terrimateu e	it 22.0 it.				
25 –													
237													
30 —													
						-							
	GRANUI	AR SC	DILS	COHES	SIVE SOILS	NOTE	S:						
BLO	NS/FT		ENSITY	BLOWS/FT	DENSITY	1		Brown, fine to	medium	SAND, trace grave	el, trace s	silt; mois	st.
C	-4	V.	LOOSE	0-2	V. SOFT	2. Com	posite	environment	al sample	taken from 0 to 7.0) ft. Grab	sample	e taken from S-2.
	-10		OOSE.	2-4					•	coarse SAND, son	ne silt; m	oist.	
	-30 -50		DENSE	4-8 9.1 <i>5</i>		_	_	ling from 8.0					
	50 50		DENSE DENSE	8-15 15-30						15.0 ft. to 20.0 ft. sing while pulling p	lua to rea	duce he	ave
		٧.		> 30	HARD	J. / lud	ou wall		augui od	and paining p	g 10 100		u. u.
GENERA	L NOTES:				ENT THE APPROXIN								
					N MADE IN THE DRI								OG.
			SUREMENTS AR		ROUNDWATER MAY	JUUUH	DOE I	J OTHER FAC	HI GAUT	TIN THUSE PRESEN	IAIINE	i iiviE	
				· - -							BORIN	IG No.	B-5

								IFOT	Inch	DT OF BODIN	O.N.		D.0
								<u>JECT</u> d Public	REPO	ORT OF BORING SHEET	G No. 1		B-6 OF 1
	We	stor	n(&)S	amps	SOM		Libr			Project No.			160591
						٧		nd, MA		CHKD BY	Chri		er J. Palmer, PE
BORIN	C Co		Now Engl	and Paring	Contractors		POD.	ING LOCA	TION		See atta	achod	nlan
FOREM			ivew Eligi	Matt Souc	Contractors			UND SUR					DATUM NAVD88
	,, NGINEEI	₹:		Julie A. Ea				E START		9/9/16	DATE		
CAMPI	ED.										_		
SAMPL	EK:		PLIT SPOON SAMP 40 lb. CATHEAD OF					DATE	TIME	GROUNDWAT WATER AT	CASIN		STABILIZATION TIME
CASING	3·		STEM AUGER DRILI		HAMMER.			9/9/2016		11.0 ft. +/-	9		STABILIZATION TIME
0, 101		TRACK RIG						0.0.20.0		7 110 111 7			
CASING	SIZE:	4 1/4 IN. IN	ISIDE DIAMETER.		OTHER:								
DEPTH	CASING			SAMPLE		PID		CAMDI	E DESCF	DIDTION	NOTES	етг	RATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)		SAMPL	E DESCI	RIFTION	NOTES		
0		0.4	10/01	4.0	00 00 00 57		., .			II OAND EILI		3'	' AC PAVEMENT
		S-1	12/24	1-3	22-30-20-57	0.5		ense, dark b debris (asph		velly SAND FILL, silt: moist.	1		
		S-2	1/24	3-4.4	44-26-100/5"	1.8			*	AVEL FILL, trace			SAND AND
_		0 -		0 1.1	11 20 100/0	1.0		ce sand; mo		,			GRAVEL FILL
5 –		S-3	12/24	5-7	34-64-34-15	1.8	-			to coarse SAND	2		
			10101					•		ittle silt; moist.			
		S-4	12/24	7-9	14-9-26-33	0.4		, brown, grav lt; moist.	/elly, fine	to coarse SAND,			
		S-5	12/24	9-11	14-20-20-18	0.2		•	to coarse	e SAND, little	3		
10		- 0 0	12/27	0 11	14 20 20 10	0.2		trace silt; m		,	J		
		S-6	9/24	11-13	11-17-17-22					e SAND, some	4		SAND
							gravel,	little to som	e silt; wet	•			JAND
15		S-7	9/24	15-17	8-14-13-12		Mediu	m dense, bro	wn. fine t	o coarse SAND,			
		0-7	5/24	10-17	0-14-10-12			gravel, little t					
												/	_
20 –		S-8	6/24	20-22	8-8-10-10		Madiu	m donoo bro	um fino	o coarse GRAVEL,	_		
		3-0	0/24	20-22	0-0-10-10			and, trace si		o coarse GRAVEL,	5		GRAVEL
							Boring	terminated a	at 22.0 ft.		1		
25													
30													
	GRANUI				SIVE SOILS	NOTE							
	WS/FT		ENSITY	BLOWS/FT	DENSITY	_	-	-		uger cuttings comp		-	=
)-4 -10		LOOSE .OOSE	0-2 2-4	V. SOFT SOFT					taken from 0 to 9.0 ft. to 20.0 ft.	υπ. Grab	sample	e taken from S-3.
	-30		DENSE	4-8						of wet sample.			
30	-50	D	ENSE	8-15	STIFF	5. Add	ed wate	er to inside o	f auger ca	sing while pulling p	lug to rec	duce he	ave.
>	50	V.	DENSE	15-30	V. STIFF								
				> 30	HARD								
GENFRA	L NOTES:	i) THF S	TRATIFICATION	LINES REPRES	ENT THE APPROYIM	IATE RO	UNDAR	Y BETWEEN	SOII TYP	ES. TRANSITIONS M	MAY RF CF	RADUAI	
TEI V										DITIONS STATED ON			
		FLUC	TUATIONS IN TH	IE LEVEL OF G	ROUNDWATER MAY	OCCUR	DUE T	O OTHER FAC	CTORS TH	AN THOSE PRESEN	T AT THE	TIME	
		MEAS	SUREMENTS AR	E MADE.									
											BORIN	G No.	B-6

	We	stor	n&)S	amps	SON SM	W	Libr	d Public ary	REPO	RT OF BORING SHEET Project No. CHKD BY	1	21	B-7 OF 1 160591 er J. Palmer, PE
					• • •	V		nd, MA					<i>,</i>
BORING FOREM			New Engl	and Boring Matt Souc	Contractors			ING LOCA UND SURI			See atta		DATUM NAVD88
	NGINEEI	₹:		Julie A. Ea			i .	START	AOL I	9/9/16	DATE		9/9/16
SAMPL	ED:	0.IN. 0D.01	DI IT ODOON OAND	LED (ODT) DDIV(E	N OA INOLIEO					GROUNDWAT	ED DE	ADING	20
SAME	LIX.		PLIT SPOON SAMP				i i	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME
CASING	3 :		STEM AUGER DRILL				1			Groundwater			
		TRACK RIG	3				·						
CASING	SIZE:	4 1/4 IN. IN	ISIDE DIAMETER.		OTHER:								
DEPTH	CASING	NI-	REC/PEN (in)	SAMPLE	DI OMO/OII	PID		SAMPLE	DESCR	RIPTION	NOTES	STRA	ATUM DESCRIPTION
(feet)	(blows/ft)	No. S-1	13/24	DEPTH (ft) 0-2	BLOWS/6" 5-14-25-19	(ppm) 0.3	Dense	. brown. SAN	D FILL. li	ttle silt, little gravel,	1		4" TOPSOIL
Ů		0.	10/24	0.2	0 14 20 10	0.0		lebris (asphal					+ 10100IL
		S-2	8/24	2-4	14-10-5-6	1.6				O FILL, little gravel,			
			0./0.4	4.0	7.40.5.5	4.0		It, little debris					
5		S-3	3/24	4-6	7-10-5-5	1.9		m dense, brov , little silt; moi		O FILL, some	2		
		S-4	3/24	6-8	5-4-1-2	1.9	Loose,	brown, grave	elly, SAN	D FILL, little silt,	2		SAND FILL
			-				trace o	lebris (wood);	moist.			٧	WITH DEBRIS
		S-5	4/12	8-9	2-WOH/6"	0.4	See no				3,4		
10		S-6	3/24	9-11	1-4-3-14	0.2				LL, some debris gravel; moist.	5		
		S-7	6/20	11-12.7	25-13-10-50/2"	0.4	, ,	,,		SAND FILL, some	6,7		
			0.20		20 10 10 00/2	<u> </u>	debris	, little gravel, l	ittle silt; r	noist.	8, 9		
							Auger	refusal at 12.	7 ft.				
15													
20													
25													
30 –													
	GRANUI	VD 60	NI S	COLLEG	SIVE SOILS	NOTE	- C ·						
	WS/FT		ENSITY	BLOWS/FT	SIVE SOILS DENSITY			uger grinding	from 0 to	5.0 ft.			
)-4		LOOSE	0-2				ling from 5.0 t					
	-10		OOSE	2-4	SOFT					is at 9.0 ft. Moved b	•		
)-30)-50		DENSE ENSE	4-8 9 15						•		*	gravel, little silt; moist. ce from 12.0 to 12.7 ft.
	50 50		DENSE	8-15 15-30		-		prised of woo		·-	.ov auge	. uuvaill	
				> 30	HARD			•		taken from 0 to 12.	.7 ft. Gra	b sample	e taken from S-7.
						_		•		•	•		etal and rubber tire.
OENIED *	I NOTES	:\ TUE 6	TDATIFICATION:	LINEO DESSE	ENT THE ADDROVE					(5 minutes of grind			ole advance).
GENEKA	L NOTES:	,			ENT THE APPROXIN N MADE IN THE DRII								G.
		•			ROUNDWATER MAY								-
		MEAS	SUREMENTS AR	E MADE.									_
											BORIN	G No.	B-7

								<u>JECT</u> d Public	REPO	RT OF BORING SHEET			B-8
	We	stor	า(&)S	amps	soñ	VV.	Libr			Project No.	1	2160591	
						٧		nd, MA		CHKD BY	Chri	stopher J. Pa	mer, PE
BORIN	G Co.		New Engl	and Boring	Contractors		BOR	ING LOCA	TION	S	See atta	ached plan	
FOREM			_	Matt Souc			-	UND SUR	FACE E			8 +/- DATUN	
WSE E	NGINEE	R:		Julie A. Ea	ton, EIT		DATI	START		9/9/16	DATE	END 9	/9/16
SAMPL	ER:	2 IN. OD S	PLIT SPOON SAMP	LER (SPT) DRIVE	24 INCHES				T	GROUNDWAT			
CASING	2 .		40 lb. CATHEAD OF		HAMMER.			9/9/2016	TIME	WATER AT		IG AT STABIL not encounte	
CASIN	J.	TRACK RIG	STEM AUGER DRILL	ING METHODS				3/3/2010		Gloui	luwatei	not encounte	ieu.
CASING	SIZE:		ISIDE DIAMETER.		OTHER:								
DEPTH	CASING			SAMPLE		PID		SAMPLE	E DESCR	IPTION	NOTES	STRATUM DI	SCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)	Madiu			medium SAND			
0		S-1	7/24	0-2	4-7-20-28	0.4		ittle gravel, lit				2" TOI	SOIL
		S-2	14/24	2-4	27-25-17-14	0.7				o coarse SAND	1		
								ittle silt; moist				SAND	FILL
5 –		S-3	6/24	4-6	17-39-16-13	0.9	,	,	0,,	SAND FILL, little (wood); moist.	2,3		
		S-4	4/24	6-8	8-8-8-7	0.2	Mediu	m dense, bro	wn and g	ray, GRAVEL,	3		
								sand, trace si				GRA	VEL
		S-5	1/24	8-10	8-8-10-26	1.6		m dense, bro silt; moist.	wn, GRA	VEL, trace sand,		0.0.	
10 –		S-6	8/24	10-12	10-22-22-19			•	elly, fine t	o coarse SAND,			
								lt; moist.					
		S-7	13/24	12-14	20-19-25-21			, brown, grav silt; moist.	elly, fine t	o coarse SAND,		SA	ND
15		S-8	18/24	14-16	18-19-18-13			, brown, grav o little silt; mo		o coarse SAND,			
								terminated a					
20 –													
25 –													
20													
30													
	GRANU WS/FT		DILS ENSITY	COHES BLOWS/FT	DENSITY	NOTE	_	ling from 2 0	to 10.0 ft	Auger cuttings cor	nprised n	nostly of cobbles	and gravel
)-4		LOOSE	0-2	V. SOFT			bserved in cu		rage. camings co.			and graven
	-10		OOSE	2-4						0 to 10.0 ft. but no ample taken from S		d in composite sa	mple
)-30)-50		DENSE ENSE	4-8 8-15	M. STIFF STIFF			ment in tip of		·	-3.		
	50		DENSE	15-30	V. STIFF	J. COD	ole ITag	inent in tip of	Sample				
				> 30	HARD								
GENERA	L NOTES:	i) THE S	TRATIFICATION	LINES REPRES	ENT THE APPROXIM	IATE BO	UNDAR	Y BETWEEN S	SOIL TYPE	S. TRANSITIONS M	AY BE GF	RADUAL.	
										DITIONS STATED ON			
					ROUNDWATER MAY	OCCUR	DUE T	O OTHER FAC	TORS TH	AN THOSE PRESENT	T AT THE	TIME	
		WEAS	SUREMENTS ARI	L WIADE.							BORIN	G No.	B-8

Inactive & Closed Landfills & Dumping

Sorted by Municipality and Facility Name

Facility Master File September 2015

Contents: I. Column Heading Definitions

II. List of Inactive & Closed Landfills & Dumping Grounds

III. Summary of Inactive & Closed Landfills & Dumping Grounds

IV. Notes

I. Column Heading Definitions

Acres Area of Landfill/Dumping Ground Footprint in Acres to two decimal places.

Active Year Year the the Landfill began disoposing solid waste excludes Dumping Ground.

Classification CLF – Closed Landfill with Env Monitoring Required; CLFNMN – Closed Landfill with No Env

Monitoring Required; ClsdCSU-DG/LF – Closed Dumping Ground/Excavated Landfill; CLSGLF – Closing Landfill with SW25 for Grading & Shaping; CSU-DG/LF – Dumping Ground/Landfill Closure

Status Unknown

Close Year Year the landfill ceased disposing of solid waste.

Closure Status Condition of final remediation: Landfill (Capped, Excavated, or Incomplete); Dumping Ground (Complete

or Incomplete).

DEP Region DEP's Regional Offices: CE - Central (Worcester), NE - Northeast (Wilmington), SE - Southeast

(Lakeville), WE - Western (Springfield).

Facility Address Physical address of the Facility including street, city/town, state and ZIP.

Facility Name Name of the Facility.

Facility Phone Phone number at the Facility.

Inactive Year Year the landfill ceased disposing of waste; Year the Dumping Ground ceased disposal or was discovered.

Liner Barrier between the solid waste fill and the underlying soil. Lined indicates that all or some portion of the

landfill is lined, while Unlined means that no part of the landfill is lined. Excludes Dumping Grounds.

Municipality City or Town that the facility is located in.

Open Year Year the facility began operations.

Reg Obj Account Regulated Object Account number - identification number for each solid waste operation.

Reporting Contact Organization that reports to DEP and/or an alternative contact for Responsible Org below; includes

organization type, name, address, contact person, and phone number.

Responsible Organization that pays the annual compliance fee and/or permittee; includes organization type, name and

Organization address.

Status Identifies the Landfill/Dumping Ground's operational status: Inactive - Not not currently disposing of solid

waste, Closure incomplete; Closed - Closure complete.

Tons Per DayTons Per Day (tpd) of solid waste disposed based on the last operating permit when available (landfill

Waste Category Category of Waste disposed: MSW (Municipal Solid Waste), C&D Waste, Woodwaste, Ash, Sludge,

 $21-Sep-15 \hspace{1.5cm} \textit{Page 1 of 96} \hspace{1.5cm} \textit{w:\bwp\swm\sitedata\PubRpts:rptInactiveLandfill}$

	Fac	ility Infor	matio	n			Responsible Organization/Reporting Contact	
FROS'	HINGTON			173043	MSW (413)623-9978	CSU-LF 14.00 tpd unknwn	Private ANITA BORGNIS FROST RD, WASHINGTON, MA 01223	
Inactive	1971	1977	C	Inc	complete	Not Lined		
COOL	TOWN DODRICH IDGE AVE ERTOWN, M		LL	173049	MSW	CSU-DG 0.67 tpd n/a	Private B F GOODRICH FOOTWEAR DIVISION 36 NICHOLS AVE, WATERTOWN, MA 02172	
Inactive	n/a	1982	C) Inc	complete	liner n/a		
ARLIN	OWN L ANDFILL NGTON/CO ERTOWN, M	OLIDGE	HL	173044	MSW	CSU-LF tpd unknwn	,,	
Inactive	0	1971	C	Inc	complete	Not Lined		
PLEA:	TOWN E RTOWN I SANT ST ERTOWN, M		UMP	173046	MSW	CSU-LF 15.00 tpd unknwn	Municipal TOWN OF WATERTOWN 149 MAIN ST, WATERTOWN, MA 02172	
Inactive	0	1965	C	Inc	complete	Not Lined		(617)972-6470
WATERT		an arm a		173047		CLFNMN		
166 Gl	E RTOWN (ROVE ST ERTOWN, N			ET LANI	DFILL	tpd unknwn	Municipal TOWN OF WATERTOWN 49 MAIN ST, WATERTOWN, MA 02172	
Closed	0	1975	1976	i Ca	pped	Not Lined		(617)972-6470
HIGH		E AND ON	ND A' ILEY		MSW L ANDFILL	CSU-LF tpd unknwn	Municipal TOWN OF WATERTOWN 149 MAIN ST, WATERTOWN, MA 02172	
Inactive	0	1961	C	Inc	complete	Not Lined		(617)972-6470
195 M	WAYLANI AIN ST		NE	169033	MSW	CSU-LF tpd unknwn	Municipal TOWN OF WAYLAND 41 COCHITUATE RD, WAYLAND, MA 01778	
Inactive	1935 LAND, MA	1958	C	Inc	complete	Not Lined	41 COCHITUATE RD, WATLAND, MA 017/8	(508)358-7701
WAYLAN				173053	•	CLFNMN		
OLD V RTE 2	WAYLAND					tpd unknwn	Municipal TOWN OF WAYLAND 41 COCHITUATE RD, WAYLAND, MA 01778	
Closed	1958	0	1980) Ca	pped	Not Lined		(508)358-7701
484 B0	ND L AND SAN OSTON PO LAND, MA	ST RD		173050 PFILL	MSW (508)358-7910	5.00	Municipal TOWN OF WAYLAND 41 COCHITUATE RD WAYLAND, MA 01778 Municipal WAYLAND BOARD OF HEALTH 484 BOSTON POST RD, WAYLAND, MA 01760	
Inactive	1980	2008	C	Inc	complete	Lined	GEORGE W RUSSELL, SUPERINTENDENT	(508)358-7910
61 SU'	WESTER TTON AVE	i.	CE	363922	MSW	CSU-DG tpd n/a		
Inactive	TER, MA	2001	C) Inc	complete	liner n/a	, , JOHN WESTERMAN	
· · · · · · · · · · · · · · · · · · ·					£			

Page 84 of 96

 $w: \bwp\swm\sited at a \PubRpts: rptInactiveLand fill$

21-Sep-15

Table 1 Summary of Soil Analytical Results Tappe Associates - Wayland Public Library Wayland, Massachusetts

Parameter	Units	Reportable Concentrations (RCs)		SAMPLING LOCATION	ı
i didilicici	Oints	RCS-1	C-1	C-2	C-3
		RC3-1	9/8/2016	9/8/2016	9/9/2016
Metals					
ARSENIC	mg/kg	20	<2.6	<2.6	3.6
CADMIUM	mg/kg	70	0.41	0.41	0.47
CHROMIUM	mg/kg	100	15	13	13
LEAD	mg/kg	200	21	27	30
MERCURY	mg/kg	20	<0.025	0.046	0.029
PCBs					
Total Arcolors	mg/kg	1	<0.10	<0.11	<0.10
TPHs	mg/kg	1000	220	460	570
VOCs					
BENZENE	mg/kg	2	< 0.0019	<0.0020	< 0.0030
ETHYLBENZENE	mg/kg	40	< 0.0039	< 0.0041	<0.0061
METHYL TERT-BUTYL ETHER (MTBE)	mg/kg	0.1	< 0.0039	<0.0041	<0.0061
NAPHTHALENE	mg/kg	4	< 0.0039	< 0.0041	< 0.0061
N-PROPYLBENZENE	mg/kg	100	< 0.0039	< 0.0041	< 0.0061
STYRENE	mg/kg	3	< 0.0039	< 0.0041	< 0.0061
TOLUENE	mg/kg	30	< 0.0019	<0.0020	< 0.0030
M/P-XYLENE	mg/kg	100	< 0.0077	<0.0082	< 0.012
O-XYLENE	mg/kg	100	<0.0039	<0.0041	<0.0061
PAHs					
ACENAPHTHENE	mg/kg	4	0.21	< 0.37	<0.18
ACENAPHTHYLENE	mg/kg	1	0.23	1.0	0.30
ANTHRACENE	mg/kg	1000	0.77	1.3	0.38
BENZO(A)ANTHRACENE	mg/kg	7	1.8	2.4	0.98
BENZO(A)PYRENE	mg/kg	2	1.7	2.0	0.97
BENZO(B)FLUORANTHENE	mg/kg	7	2.0	2.4	1.1
BENZO(G,H,I)PERYLENE	mg/kg	1000	0.83	1.1	0.73
BENZO(K)FLUORANTHENE	mg/kg	70	0.79	1.0	0.43
CHRYSENE	mg/kg	70	1.7	2.3	0.94
DIBENZ(A,H)ANTHRACENE	mg/kg	0.7	0.23	<0.37	0.18
FLUORANTHENE	mg/kg	1000	3.6	4.8	1.8
FLUORENE	mg/kg	1000	0.42	1.4	<0.18
INDENO(1,2,3-CD)PYRENE	mg/kg	7	0.93	1.1	0.70
2-METHYLNAPHTHALENE	mg/kg	0.7	<0.18	0.82	<0.18
NAPHTHALENE	mg/kg	4	<0.18	0.51	<0.18
PHENANTHRENE	mg/kg	10	3.1	7.2	1.4
PYRENE	mg/kg	1000	3.5	5.7	2.2

Abbreviations:

Abbreviations:
PAH = Polycyclic Aromatic Hydrocarbons
PCBs = Polychlorinated Biphenyls
VOCs = Volatile Organic Compounds
TPHs = Total Patroleum Hydrocarbons mg/kg = milligrams per kilogram NS = No Standard NT = Not tested

Notes: BOLD BOLD

- < = indicates parameter not detected above laboratory method reporting limit, shown
- 1 = Standards are from Massachusetts Contingency Plan (MCP), 310 CMR 40, April 2014. 2 = Standard is for mixed isomers, MassDEP does not publish standards for individual isomers.

September 16, 2016

Frank Ricciardi Weston & Sampson Engineers MA 5 Centennial Drive Peabody, MA 01960

Project Location: Wayland Public Library (TAPPE)

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 16I0369

Meghan S. Kelley

Enclosed are results of analyses for samples received by the laboratory on September 9, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
16I0369-01	8
16I0369-02	16
16I0369-03	24
Sample Preparation Information	32
QC Data	34
Volatile Organic Compounds by GC/MS	34
B158230	34
Semivolatile Organic Compounds by GC/MS	39
B158064	39
Polychlorinated Biphenyls By GC/ECD	43
B158062	43
Petroleum Hydrocarbons Analyses	44
B158063	44
Metals Analyses (Total)	45
B158122	45
B158193	45
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	46
B158089	46
B158294	46
Dual Column RPD Report	47
Flag/Qualifier Summary	49
Certifications	50
Chain of Custody/Sample Receipt	54

Table of Contents (continued)

Weston & Sampson Engineers MA 5 Centennial Drive Peabody, MA 01960

ATTN: Frank Ricciardi

PURCHASE ORDER NUMBER:

REPORT DATE: 9/16/2016

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16I0369

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland Public Library (TAPPE)

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
C-1	16I0369-01	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 6010C-D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modi	ified
				SW-846 8260C	
				SW-846 8270D	
C-2	16I0369-02	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 6010C-D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modi	ified
				SW-846 8260C	
				SW-846 8270D	
C-3	16I0369-03	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 6010C-D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modi	ified
				SW-846 8260C	
				SW-846 8270D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory qua	ılitv control obi	iectives unless lis	sted below or ot	therwise qualified in this report	i.
--	-------------------	---------------------	------------------	-----------------------------------	----

SW-846 8082A

Qualifications:

O-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

16I0369-01[C-1], 16I0369-02[C-2], 16I0369-03[C-3]

SW-846 8100 Modified

Qualifications:

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.

Analyte & Samples(s) Qualified:

TPH (C9-C36)

B158063-MS1, B158063-MSD1

S-01

The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.

Analyte & Samples(s) Qualified:

o-Terphenyl

16I0369-02[C-2], 16I0369-03[C-3], B158063-MS1, B158063-MSD1

SW-846 8260C

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

Acetone

B158230-BS1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.

Analyte & Samples(s) Qualified:

16I0369-01[C-1], 16I0369-02[C-2], 16I0369-03[C-3], B158230-BLK1, B158230-BS1, B158230-BSD1

SW-846 8270D

Qualifications:

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.

Analyte & Samples(s) Qualified:

p-Terphenyl-d14

B158064-BSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result

was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bis(2-Ethylhexyl)phthalate

16I0369-01[C-1], 16I0369-02[C-2], 16I0369-03[C-3], B158064-BLK1, B158064-BS1, B158064-BSD1

Di-n-octylphthalate

16I0369-01[C-1], 16I0369-02[C-2], 16I0369-03[C-3], B158064-BLK1, B158064-BS1, B158064-BSD1

SW-846 6010C/D SW-846 6020A/B

For NC, Metals methods SW-846 6010D and SW-846 6020B are followed, and for all other states methods SW-846 6010C and SW-846 6020A are followed.

SW-846 8100 Modified

TPH (C9-C36) is quantitated against a calibration made with a diesel standard.

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

SW-846 8270D

Laboratory control sample recoveries for required MCP Data Enhancement 8270 compounds were all within control limits specified by the method, 40-140% for base/neutrals and 30-130% for acids except for "difficult analytes" listed below and/or otherwise listed in this narrative. Difficult analytes limits are 15 and 140%: 2,4-dinitrophenol, 4-chloroaniline, 4-nitrophenol, and phenol.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lua Warrengton

Lisa A. Worthington
Project Manager

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-1 Sampled: 9/8/2016 13:00

Sample ID: 16I0369-01
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
tert-Amyl Methyl Ether (TAME)	ND	0.00097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Benzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Bromobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Bromochloromethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Bromodichloromethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Bromoform	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Bromomethane	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
2-Butanone (MEK)	ND	0.039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
n-Butylbenzene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
sec-Butylbenzene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
tert-Butylbenzene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
tert-Butyl Ethyl Ether (TBEE)	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Carbon Disulfide	ND	0.019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Carbon Tetrachloride	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Chlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Chlorodibromomethane	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Chloroethane	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Chloroform	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Chloromethane	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
2-Chlorotoluene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
4-Chlorotoluene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2-Dibromoethane (EDB)	ND	0.00097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Dibromomethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,3-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,4-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Dichlorodifluoromethane (Freon 12)	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,1-Dichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2-Dichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,1-Dichloroethylene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
cis-1,2-Dichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
trans-1,2-Dichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2-Dichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,3-Dichloropropane	ND	0.00097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
2,2-Dichloropropane	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,1-Dichloropropene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
cis-1,3-Dichloropropene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
trans-1,3-Dichloropropene	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Diethyl Ether	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Diisopropyl Ether (DIPE)	ND	0.00097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,4-Dioxane	ND	0.097	mg/Kg dry	1	V-16	SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Ethylbenzene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-1 Sampled: 9/8/2016 13:00

Sample ID: 16I0369-01
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			mune organic com	pounds by	. 0,1,20				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0039	mg/Kg dry	1	-	SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
2-Hexanone (MBK)	ND	0.019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Isopropylbenzene (Cumene)	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
p-Isopropyltoluene (p-Cymene)	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Methyl tert-Butyl Ether (MTBE)	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Methylene Chloride	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
4-Methyl-2-pentanone (MIBK)	ND	0.019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Naphthalene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
n-Propylbenzene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Styrene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,1,1,2-Tetrachloroethane	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,1,2,2-Tetrachloroethane	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Tetrachloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Tetrahydrofuran	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Toluene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2,3-Trichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2,4-Trichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,1,1-Trichloroethane	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,1,2-Trichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Trichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Trichlorofluoromethane (Freon 11)	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2,3-Trichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,2,4-Trimethylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
1,3,5-Trimethylbenzene	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Vinyl Chloride	ND	0.0097	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
m+p Xylene	ND	0.0077	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
o-Xylene	ND	0.0039	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 12:54	ZZZ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		103	70-130					9/13/16 12:54	
Toluene-d8		93.6	70-130					9/13/16 12:54	
4-Bromofluorobenzene		83.6	70-130					9/13/16 12:54	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-1 Sampled: 9/8/2016 13:00

Sample ID: 16I0369-01
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	0.21	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Acenaphthylene	0.23	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Acetophenone	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Aniline	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Anthracene	0.77	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Benzo(a)anthracene	1.8	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Benzo(a)pyrene	1.7	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Benzo(b)fluoranthene	2.0	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Benzo(g,h,i)perylene	0.83	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Benzo(k)fluoranthene	0.79	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Bis(2-chloroethoxy)methane	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Bis(2-chloroisopropyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Bis(2-Ethylhexyl)phthalate	ND	0.36	mg/Kg dry	1	V-20	SW-846 8270D	9/12/16	9/13/16 12:37	WSD
4-Bromophenylphenylether	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Butylbenzylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
4-Chloroaniline	ND	0.69	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2-Chloronaphthalene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2-Chlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Chrysene	1.7	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Dibenz(a,h)anthracene	0.23	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Dibenzofuran	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Di-n-butylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
1,2-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
1,3-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
1,4-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2,4-Dichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Diethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2,4-Dimethylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Dimethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2,4-Dinitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2,4-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2,6-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Di-n-octylphthalate	ND	0.36	mg/Kg dry	1	V-20	SW-846 8270D	9/12/16	9/13/16 12:37	WSD
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.36	mg/Kg dry	1	V-20	SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Fluoranthene		0.30				SW-846 8270D		9/13/16 12:37	WSD
Fluorene	3.6		mg/Kg dry	1			9/12/16		
Hexachlorobenzene	0.42 ND	0.18	mg/Kg dry	1		SW-846 8270D SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Hexachlorobutadiene	ND ND	0.36	mg/Kg dry	1			9/12/16	9/13/16 12:37	WSD
	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Hexachloroethane	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Indeno(1,2,3-cd)pyrene	0.93	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Isophorone	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-1 Sampled: 9/8/2016 13:00

Sample ID: 16I0369-01
Sample Matrix: Soil

p-Terphenyl-d14

Semivolatile Organic Compounds by GC/MS

Date/Time

9/13/16 12:37

Date

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
3/4-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Nitrobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2-Nitrophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
4-Nitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Pentachlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Phenanthrene	3.1	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Phenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Pyrene	3.5	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
1,2,4-Trichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2,4,5-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
2,4,6-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 12:37	WSD
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorophenol		81.9	30-130					9/13/16 12:37	
Phenol-d6		79.0	30-130					9/13/16 12:37	
Nitrobenzene-d5		84.3	30-130					9/13/16 12:37	
2-Fluorobiphenyl		86.8	30-130					9/13/16 12:37	
2,4,6-Tribromophenol		82.2	30-130					9/13/16 12:37	

30-130

102

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 16I0369

Date Received: 9/9/2016

Sampled: 9/8/2016 13:00 Field Sample #: C-1

Sample ID: 16I0369-01 Sample Matrix: Soil

Sample Flags: O-32		Po	lychlorinated Biph	enyls By GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1221 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1232 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1242 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1248 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1254 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1260 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1262 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Aroclor-1268 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 19:54	KAL
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		94.4	30-150					9/13/16 19:54	
Decachlorobiphenyl [2]		107	30-150					9/13/16 19:54	
Tetrachloro-m-xylene [1]		90.0	30-150					9/13/16 19:54	
Tetrachloro-m-xylene [2]		85.3	30-150					9/13/16 19:54	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-1 Sampled: 9/8/2016 13:00

Sample ID: 16I0369-01
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)	220	87	mg/Kg dry	10		SW-846 8100 Modified	9/12/16	9/12/16 14:17	SCS
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
o-Terphenyl		69.7	40-140					9/12/16 14:17	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-1 Sampled: 9/8/2016 13:00

Sample ID: 16I0369-01
Sample Matrix: Soil

Metals Analyses (Total)

					, ,					
								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		ND	2.6	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:07	QNW
Cadmium		0.41	0.26	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:07	QNW
Chromium		15	0.52	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:07	QNW
Lead		21	0.78	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:07	QNW
Mercury		ND	0.025	mg/Kg dry	1		SW-846 7471B	9/13/16	9/14/16 9:00	SHN

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-1 Sampled: 9/8/2016 13:00

Sample ID: 16I0369-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Specific conductance	5.8	2.0	μmhos/cm	1		SM21-22 2510B Modified	9/14/16	9/14/16 10:55	ММН
% Solids	95.7		% Wt	1		SM 2540G	9/12/16	9/13/16 7:37	MRL

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Lett-Ampl Machyl Lishler (TAML) ND 0.010 mg/kg dry 1 SW-464 5200C 91316 91316 1220 ZZZ	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Personance	Acetone	ND	0.10	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Browne/browne/	tert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Promochlorouchlame ND 0,000	Benzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Bernondichloromethane ND 0.0020 mg/kg dry 1 SW-446 8260C 0.1314 0.3146 13.20 2.22 2.22 2.02	Bromobenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Bernendame	Bromochloromethane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Demonmentance No	Bromodichloromethane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
2-Butanore (MEK) ND 0.041 mg/kg dy 1 SW-466 \$200C 91316 91316 1320 222 142 143 144 145	Bromoform	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Pastylbenzene ND 0.0041 mg/kg dry 1 SW-846 \$200C 91316 91316 1320 ZZZ 2ZZ	Bromomethane	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Sec-Burylbenzene N.D. 0.0041 mg/kg dry 1 SW-846 \$250C 91316 91316 1320 7272 1275	2-Butanone (MEK)	ND	0.041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
tert-Barlylbenzene	n-Butylbenzene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
tert-Burly Ethyl Ether (TBEE) ND 0.0041 ng/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 Carbon Disalifide ND 0.0020 ng/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 Carbon Tetrachlorde ND 0.0020 ng/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 Chlorodibromomethane ND 0.0041 mg/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 Chlorodibromomethane ND 0.0041 mg/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 Chlorodibromomethane ND 0.0041 mg/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 Chlorodibromomethane ND 0.0041 mg/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 2-Chlorodibrome ND 0.0041 mg/kg dry 1 SW-846 \$260C 913/16 913/16 1320 272 2-Chlorodobene<	sec-Butylbenzene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Curbon Disulfide	tert-Butylbenzene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Carbon Tetrachloride	tert-Butyl Ethyl Ether (TBEE)	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Chlorobenzene	Carbon Disulfide	ND	0.020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Chlorodibromomethane	Carbon Tetrachloride	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Chloroethane	Chlorobenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Chlorochane ND 0.010 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ Chloroform ND 0.0041 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ Chlorotoluene ND 0.0041 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ 4-Chlorotoluene ND 0.0041 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ 4-Chlorotoluene ND 0.010 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ 1,2-Dibromoe-3-chloropropane (DBCP) ND 0.010 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ 1,2-Dibromoe-1-decene ND 0.0020 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ 1,2-Dichlorochane ND 0.0020 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13-20 ZZZ 1,4-Dichlorochane <t< td=""><td>Chlorodibromomethane</td><td>ND</td><td>0.0041</td><td></td><td>1</td><td></td><td>SW-846 8260C</td><td>9/13/16</td><td>9/13/16 13:20</td><td>ZZZ</td></t<>	Chlorodibromomethane	ND	0.0041		1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Chloroform ND 0.0041 mg/Kg dry 1 SW-846 8260C 913/16 91/31/6 13:20 ZZZ Chloromethane ND 0.001 mg/Kg dry 1 SW-846 8260C 91/31/6 91/31/6 13:20 ZZZ 2-Chlorotoluce ND 0.0041 mg/Kg dry 1 SW-846 8260C 91/31/6 91/31/6 13:20 ZZZ 4-Chlorotoluce ND 0.001 mg/Kg dry 1 SW-846 8260C 91/31/6 91/31/6 13:20 ZZZ 1-2-Dibromo-3-chloropropane (DBCP) ND 0.0010 mg/Kg dry 1 SW-846 8260C 91/31/6 91/31/6 13:20 ZZZ 1-2-Dibromochane (EDB) ND 0.0020 mg/Kg dry 1 SW-846 8260C 91/31/6 91/31/6 13:20 ZZZ 1-2-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 91/31/6 91/31/6 13:20 ZZZ 1-3-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 91/31/6 91/31/6 13:20 ZZZ 1-4-Dichl	Chloroethane	ND	0.010		1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Chloromethane ND 0.010 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 2-Chlorotoluene ND 0.0041 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 4-Chlorotoluene ND 0.0041 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,2-Dibromor-3-chloropropane (DBCP) ND 0.010 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,2-Dibromorethane (EDB) ND 0.0020 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,2-Dichlorobenzene ND 0.0020 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,3-Dichlorobenzene ND 0.0020 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,4-Dichlorochylene ND 0.0020 mg/kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,4-Dichlo	Chloroform	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
2-Chlorotoluene ND 0.0041 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 4-Chlorotoluene ND 0.0041 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,2-Dibiromo-3-chloropropane (DBCP) ND 0.010 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,2-Dibiromo-4-chloropropane (DBCP) ND 0.0010 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,2-Dichloroberzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,3-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,4-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ 1,4-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 913/16 913/16 13:20 ZZZ	Chloromethane	ND	0.010		1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
4-Chlorotoluene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dibromoe-3-chloropropane (DBCP) ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dibromoethane (EDB) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Dibromoethane (EDB) ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dichloroethane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ <	2-Chlorotoluene	ND	0.0041		1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1.2-Dibromo-3-chloropropane (DBCP) ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.2-Dibromoethane (EDB) ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.2-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.3-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.3-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.4-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.4-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtane (Freon 12) ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichlorochtylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13.20 ZZ 1.1-Dichl	4-Chlorotoluene	ND	0.0041		1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2-Dibromoethane (EDB) ND 0,0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Dibromomethane ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichlorobenzene ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichlorobenzene ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dichlorobenzene ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Dichlorodifluoroethane (Freon 12) ND 0,010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloroethane ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethylene ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	1,2-Dibromo-3-chloropropane (DBCP)	ND	0.010		1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2-Dichlorobenzene ND	1,2-Dibromoethane (EDB)	ND	0.0010		1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,3-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 3/20 ZZZ 1,4-Dichlorobenzene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 3/20 ZZZ Dichlorodifluoromethane (Freon 12) ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 9/13/16 3/20 ZZZ 1,1-Dichloroethane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 3/20 ZZZ 1,1-Dichloroethane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 3/20 ZZZ 1,1-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 3/20 ZZZ trans-1,2-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 3/20 ZZZ 1,2-Dichloroethylene ND 0.0020 mg/Kg dry <td>Dibromomethane</td> <td>ND</td> <td>0.0020</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8260C</td> <td>9/13/16</td> <td>9/13/16 13:20</td> <td>ZZZ</td>	Dibromomethane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,4-Dichlorobenzene ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichlorodifluoromethane (Freon 12) ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethane ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloroethane ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethylene ND 0,0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethylene ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloroethylene ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloropropane ND 0,0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichloropropane ND 0,0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropane ND 0,0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0,0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0,0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0,0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0,0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0,010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Dichyl Ether ND 0,010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0,010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0,010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0,1010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0,1010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0,1010 mg/Kg dry 1 SW-	1,2-Dichlorobenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Dichlorodifluoromethane (Freon 12) ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloroethane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethylene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloropropane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichloropropane ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0010 mg/Kg dry 1	1,3-Dichlorobenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,1-Dichloroethane	1,4-Dichlorobenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2-Dichloroethane	Dichlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,1-Dichloroethylene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,2-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,2-Dichloroptopane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloropropane ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ cis-1,3-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,3-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,3-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	1,1-Dichloroethane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
cis-1,2-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,2-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloropropane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichloropropane ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 2,2-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ cis-1,3-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	1,2-Dichloroethane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
trans-1,2-Dichloroethylene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,2-Dichloropropane ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichloropropane ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 2,2-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,3-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Distopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	1,1-Dichloroethylene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2-Dichloropropane	cis-1,2-Dichloroethylene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,3-Dichloropropane ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 2,2-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ cis-1,3-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,3-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diisopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 <t< td=""><td>trans-1,2-Dichloroethylene</td><td>ND</td><td>0.0020</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8260C</td><td>9/13/16</td><td>9/13/16 13:20</td><td>ZZZ</td></t<>	trans-1,2-Dichloroethylene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
2,2-Dichloropropane ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,1-Dichloropropene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ cis-1,3-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,3-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diisopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	1,2-Dichloropropane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,1-Dichloropropene ND 0.0020 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ cis-1,3-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,3-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diisopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	1,3-Dichloropropane	ND	0.0010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
cis-1,3-Dichloropropene ND 0.0041 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ trans-1,3-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diisopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	2,2-Dichloropropane	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
trans-1,3-Dichloropropene ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diisopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	1,1-Dichloropropene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diisopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	cis-1,3-Dichloropropene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Diethyl Ether ND 0.010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ Diisopropyl Ether (DIPE) ND 0.0010 mg/Kg dry 1 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ 1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	trans-1,3-Dichloropropene	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	Diethyl Ether	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,4-Dioxane ND 0.10 mg/Kg dry 1 V-16 SW-846 8260C 9/13/16 9/13/16 13:20 ZZZ	Diisopropyl Ether (DIPE)	ND	0.0010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
	1,4-Dioxane	ND	0.10	mg/Kg dry	1	V-16	SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
	Ethylbenzene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			mine organic com	pounds by	. 0,1,20				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
2-Hexanone (MBK)	ND	0.020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Isopropylbenzene (Cumene)	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
p-Isopropyltoluene (p-Cymene)	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Methyl tert-Butyl Ether (MTBE)	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Methylene Chloride	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
4-Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Naphthalene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
n-Propylbenzene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Styrene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,1,1,2-Tetrachloroethane	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,1,2,2-Tetrachloroethane	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Tetrachloroethylene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Tetrahydrofuran	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Toluene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,1,1-Trichloroethane	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,1,2-Trichloroethane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Trichloroethylene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2,3-Trichloropropane	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
1,3,5-Trimethylbenzene	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Vinyl Chloride	ND	0.010	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
m+p Xylene	ND	0.0082	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
o-Xylene	ND	0.0041	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:20	ZZZ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		104	70-130					9/13/16 13:20	
Toluene-d8		95.6	70-130					9/13/16 13:20	
4-Bromofluorobenzene		91.0	70-130					9/13/16 13:20	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Acenaphthylene	1.0	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Acetophenone	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Aniline	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Anthracene	1.3	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Benzo(a)anthracene	2.4	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Benzo(a)pyrene	2.0	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Benzo(b)fluoranthene	2.4	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Benzo(g,h,i)perylene	1.1	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Benzo(k)fluoranthene	1.0	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Bis(2-chloroethoxy)methane	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Bis(2-chloroethyl)ether	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Bis(2-chloroisopropyl)ether	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Bis(2-Ethylhexyl)phthalate	ND	0.73	mg/Kg dry	2	V-20	SW-846 8270D	9/12/16	9/13/16 12:59	WSD
4-Bromophenylphenylether	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Butylbenzylphthalate	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
4-Chloroaniline	ND	1.4	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2-Chloronaphthalene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2-Chlorophenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Chrysene	2.3	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Dibenz(a,h)anthracene	ND	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Dibenzofuran	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Di-n-butylphthalate	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
1,2-Dichlorobenzene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
1,3-Dichlorobenzene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
1,4-Dichlorobenzene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
3,3-Dichlorobenzidine	ND	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2,4-Dichlorophenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Diethylphthalate	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2,4-Dimethylphenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Dimethylphthalate	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2,4-Dinitrophenol	ND	1.4	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2,4-Dinitrotoluene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2,6-Dinitrotoluene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Di-n-octylphthalate	ND	0.73	mg/Kg dry	2	V-20	SW-846 8270D	9/12/16	9/13/16 12:59	WSD
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.73	mg/Kg dry	2	V-20	SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Fluoranthene		0.73		2		SW-846 8270D		9/13/16 12:59	WSD
Fluorene	4.8		mg/Kg dry				9/12/16 9/12/16		WSD
Hexachlorobenzene	1.4	0.37	mg/Kg dry	2		SW-846 8270D SW-846 8270D		9/13/16 12:59	
	ND	0.73	mg/Kg dry	2			9/12/16	9/13/16 12:59	WSD
Hexachloropthane	ND ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Hexachloroethane	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Indeno(1,2,3-cd)pyrene	1.1	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Isophorone	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2-Methylnaphthalene	0.82	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
3/4-Methylphenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Naphthalene	0.51	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Nitrobenzene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2-Nitrophenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
4-Nitrophenol	ND	1.4	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Pentachlorophenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Phenanthrene	7.2	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Phenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Pyrene	5.7	0.37	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
1,2,4-Trichlorobenzene	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2,4,5-Trichlorophenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
2,4,6-Trichlorophenol	ND	0.73	mg/Kg dry	2		SW-846 8270D	9/12/16	9/13/16 12:59	WSD
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
2-Fluorophenol		80.4	30-130					9/13/16 12:59	
Phenol-d6		80.1	30-130					9/13/16 12:59	

30-130

30-130

30-130

30-130

9/13/16 12:59

9/13/16 12:59

9/13/16 12:59

9/13/16 12:59

81.7

78.0

75.0

96.2

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Sample Flags: O-32

Polychlorinated Biphenyls By GC/ECD

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1221 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1232 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1242 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1248 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1254 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1260 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1262 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Aroclor-1268 [1]	ND	0.11	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:12	KAL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		80.7	30-150					9/13/16 20:12	
Decachlorobiphenyl [2]		96.0	30-150					9/13/16 20:12	
Tetrachloro-m-xylene [1]		79.7	30-150					9/13/16 20:12	
Tetrachloro-m-xylene [2]		75.3	30-150					9/13/16 20:12	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)		460	180	mg/Kg dry	20		SW-846 8100 Modified	9/12/16	9/12/16 14:34	SCS
	Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
o-Terphenyl			*	40-140		S-01			9/12/16 14:34	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Metals Analyses (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		ND	2.6	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:13	QNW
Cadmium		0.41	0.26	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:13	QNW
Chromium		13	0.53	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:13	QNW
Lead		27	0.79	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:13	QNW
Mercury		0.046	0.026	mg/Kg dry	1		SW-846 7471B	9/13/16	9/14/16 9:02	SHN

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-2 Sampled: 9/8/2016 15:50

Sample ID: 16I0369-02
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Specific conductance	8.1	2.0	μmhos/cm	1		SM21-22 2510B Modified	9/14/16	9/14/16 10:55	ММН
% Solids	92.6		% Wt	1		SM 2540G	9/12/16	9/13/16 7:37	MRI.

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-3 Sampled: 9/9/2016 14:25

Sample ID: 16I0369-03
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.15	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
tert-Amyl Methyl Ether (TAME)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Benzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Bromobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Bromochloromethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Bromodichloromethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Bromoform	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Bromomethane	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
2-Butanone (MEK)	ND	0.061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
n-Butylbenzene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
sec-Butylbenzene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
tert-Butylbenzene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
tert-Butyl Ethyl Ether (TBEE)	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Carbon Disulfide	ND	0.030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Carbon Tetrachloride	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Chlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Chlorodibromomethane	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Chloroethane	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Chloroform	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Chloromethane	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
2-Chlorotoluene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
4-Chlorotoluene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2-Dibromoethane (EDB)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Dibromomethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2-Dichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,3-Dichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,4-Dichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Dichlorodifluoromethane (Freon 12)	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,1-Dichloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2-Dichloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,1-Dichloroethylene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
cis-1,2-Dichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
trans-1,2-Dichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2-Dichloropropane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,3-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
2,2-Dichloropropane	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,1-Dichloropropene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
cis-1,3-Dichloropropene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
trans-1,3-Dichloropropene	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Diethyl Ether	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Diisopropyl Ether (DIPE)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,4-Dioxane	ND	0.15	mg/Kg dry	1	V-16	SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Ethylbenzene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-3 Sampled: 9/9/2016 14:25

Sample ID: 16I0369-03
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			mune organic con	pounds by G	. 071.120				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
2-Hexanone (MBK)	ND	0.030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Isopropylbenzene (Cumene)	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
p-Isopropyltoluene (p-Cymene)	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Methyl tert-Butyl Ether (MTBE)	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Methylene Chloride	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
4-Methyl-2-pentanone (MIBK)	ND	0.030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Naphthalene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
n-Propylbenzene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Styrene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,1,1,2-Tetrachloroethane	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,1,2,2-Tetrachloroethane	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Tetrachloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Tetrahydrofuran	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Toluene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2,3-Trichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2,4-Trichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,1,1-Trichloroethane	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,1,2-Trichloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Trichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Trichlorofluoromethane (Freon 11)	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2,3-Trichloropropane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,2,4-Trimethylbenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
1,3,5-Trimethylbenzene	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Vinyl Chloride	ND	0.015	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
m+p Xylene	ND	0.012	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
o-Xylene	ND	0.0061	mg/Kg dry	1		SW-846 8260C	9/13/16	9/13/16 13:47	ZZZ
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		104	70-130					9/13/16 13:47	
Toluene-d8		94.4	70-130					9/13/16 13:47	
4-Bromofluorobenzene		86.7	70-130					9/13/16 13:47	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-3 Sampled: 9/9/2016 14:25

Sample ID: 16I0369-03
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Acenaphthylene	0.30	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Acetophenone	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Aniline	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Anthracene	0.38	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Benzo(a)anthracene	0.98	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Benzo(a)pyrene	0.97	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Benzo(b)fluoranthene	1.1	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Benzo(g,h,i)perylene	0.73	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Benzo(k)fluoranthene	0.43	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Bis(2-chloroethoxy)methane	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Bis(2-chloroisopropyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Bis(2-Ethylhexyl)phthalate	ND	0.36	mg/Kg dry	1	V-20	SW-846 8270D	9/12/16	9/13/16 18:33	WSD
4-Bromophenylphenylether	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Butylbenzylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
4-Chloroaniline	ND	0.69	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2-Chloronaphthalene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2-Chlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Chrysene	0.94	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Dibenz(a,h)anthracene	0.18	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Dibenzofuran	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Di-n-butylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
1,2-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
1,3-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
1,4-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2,4-Dichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Diethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2,4-Dimethylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Dimethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2,4-Dinitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2,4-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2,6-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Di-n-octylphthalate	ND	0.36	mg/Kg dry	1	V-20	SW-846 8270D	9/12/16	9/13/16 18:33	WSD
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Fluoranthene	1.8	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Hexachlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Hexachlorobutadiene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Hexachloroethane	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Indeno(1,2,3-cd)pyrene	0.70	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Isophorone	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-3 Sampled: 9/9/2016 14:25

Sample ID: 16I0369-03
Sample Matrix: Soil

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
3/4-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Nitrobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2-Nitrophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
4-Nitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Pentachlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Phenanthrene	1.4	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Phenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Pyrene	2.2	0.18	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
1,2,4-Trichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2,4,5-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
2,4,6-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	9/12/16	9/13/16 18:33	WSD
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		83.8	30-130					9/13/16 18:33	
Phenol-d6		82.1	30-130					9/13/16 18:33	

30-130

30-130

30-130

30-130

9/13/16 18:33

9/13/16 18:33

9/13/16 18:33

9/13/16 18:33

82.8

79.2

81.2

118

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 16I0369

Date Received: 9/9/2016

Sampled: 9/9/2016 14:25 Field Sample #: C-3

Sample ID: 16I0369-03 Sample Matrix: Soil

Sample Flags: O-32		Po	lychlorinated Biph	enyls By GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1221 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1232 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1242 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1248 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1254 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1260 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1262 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Aroclor-1268 [1]	ND	0.10	mg/Kg dry	5		SW-846 8082A	9/12/16	9/13/16 20:29	KAL
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		81.5	30-150					9/13/16 20:29	
Decachlorobiphenyl [2]		94.8	30-150					9/13/16 20:29	
Tetrachloro-m-xylene [1]		89.2	30-150					9/13/16 20:29	
Tetrachloro-m-xylene [2]		90.8	30-150					9/13/16 20:29	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-3 Sampled: 9/9/2016 14:25

Sample ID: 16I0369-03
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date	Date/Time	Analyst
TPH (C9-C36)	570	170	mg/Kg dry	20	riag/Quai	SW-846 8100 Modified	9/12/16	9/12/16 15:28	Analyst SCS
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
o-Terphenyl		*	40-140		S-01			9/12/16 15:28	

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-3 Sampled: 9/9/2016 14:25

Sample ID: 16I0369-03
Sample Matrix: Soil

Metals Analyses (Total)

				-						
								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		3.6	2.6	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:18	QNW
Cadmium		0.47	0.26	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:18	QNW
Chromium		13	0.51	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:18	QNW
Lead		30	0.77	mg/Kg dry	1		SW-846 6010C-D	9/12/16	9/13/16 23:18	QNW
Mercury		0.029	0.026	mg/Kg dry	1		SW-846 7471B	9/13/16	9/14/16 9:03	SHN

Project Location: Wayland Public Library (TAPPE) Sample Description: Work Order: 1610369

Date Received: 9/9/2016

Field Sample #: C-3 Sampled: 9/9/2016 14:25

Sample ID: 16I0369-03
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Specific conductance	3.3	2.0	μmhos/cm	1		SM21-22 2510B Modified	9/14/16	9/14/16 10:55	ММН
% Solids	95.4		% Wt	1		SM 2540G	9/12/16	9/13/16 7:37	MRL

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
16I0369-01 [C-1]	B158089	09/12/16
16I0369-02 [C-2]	B158089	09/12/16
16I0369-03 [C-3]	B158089	09/12/16

SM21-22 2510B Modified

Lab Number [Field ID]	Batch	Initial [g]	Date
16I0369-01 [C-1]	B158294	1.00	09/14/16
16I0369-02 [C-2]	B158294	1.00	09/14/16
16I0369-03 [C-3]	B158294	1.00	09/14/16

Prep Method: SW-846 3050B-SW-846 6010C-D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
16I0369-01 [C-1]	B158122	1.01	50.0	09/12/16
16I0369-02 [C-2]	B158122	1.03	50.0	09/12/16
16I0369-03 [C-3]	B158122	1.02	50.0	09/12/16

Prep Method: SW-846 7471-SW-846 7471B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
16I0369-01 [C-1]	B158193	0.615	50.0	09/13/16
16I0369-02 [C-2]	B158193	0.619	50.0	09/13/16
16I0369-03 [C-3]	B158193	0.598	50.0	09/13/16

Prep Method: SW-846 3546-SW-846 8082A

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
16I0369-01 [C-1]	B158062	10.0	10.0	09/12/16
16I0369-02 [C-2]	B158062	10.0	10.0	09/12/16
16I0369-03 [C-3]	B158062	10.0	10.0	09/12/16

Prep Method: SW-846 3546-SW-846 8100 Modified

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
16I0369-01 [C-1]	B158063	30.0	1.00	09/12/16
16I0369-02 [C-2]	B158063	30.0	1.00	09/12/16
16I0369-03 [C-3]	B158063	30.0	1.00	09/12/16

Prep Method: SW-846 5035-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
16I0369-01 [C-1]	B158230	5.41	10.0	09/13/16
16I0369-02 [C-2]	B158230	5.30	10.0	09/13/16
16I0369-03 [C-3]	B158230	3.46	10.0	09/13/16

Sample Extraction Data

Prep Method: SW-846 3546-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
16I0369-01 [C-1]	B158064	30.0	1.00	09/12/16
16I0369-02 [C-2]	B158064	30.0	1.00	09/12/16
16I0369-03 [C-3]	B158064	30.0	1.00	09/12/16

Naphthalene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	LIIIII	Units	Level	Resuit	70KEC	Lillits	KPD	LIIIIt	Notes
Satch B158230 - SW-846 5035										
Blank (B158230-BLK1)				Prepared &	Analyzed: 09	/13/16				
Acetone	ND	0.10	mg/Kg wet							
ert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
enzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
romochloromethane	ND	0.0020	mg/Kg wet							
romodichloromethane	ND	0.0020	mg/Kg wet							
romoform	ND	0.0020	mg/Kg wet							
romomethane	ND	0.010	mg/Kg wet							
Butanone (MEK)	ND	0.040	mg/Kg wet							
Butylbenzene	ND	0.0020	mg/Kg wet							
ec-Butylbenzene	ND	0.0020	mg/Kg wet							
rt-Butylbenzene	ND	0.0020	mg/Kg wet							
rt-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
arbon Disulfide	ND	0.0060	mg/Kg wet							
arbon Tetrachloride	ND	0.0020	mg/Kg wet							
hlorobenzene	ND	0.0020	mg/Kg wet							
hlorodibromomethane	ND	0.0010	mg/Kg wet							
hloroethane	ND	0.010	mg/Kg wet							
hloroform	ND	0.0040	mg/Kg wet							
hloromethane	ND	0.010	mg/Kg wet							
Chlorotoluene	ND	0.0020	mg/Kg wet							
Chlorotoluene	ND	0.0020	mg/Kg wet							
2-Dibromo-3-chloropropane (DBCP)	ND	0.0020	mg/Kg wet							
2-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet							
ibromomethane	ND	0.0020	mg/Kg wet							
2-Dichlorobenzene	ND	0.0020	mg/Kg wet							
3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
ichlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg wet							
1-Dichloroethane	ND	0.0020	mg/Kg wet							
2-Dichloroethane	ND	0.0020	mg/Kg wet							
1-Dichloroethylene	ND	0.0040	mg/Kg wet							
s-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
ans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
2-Dichloropropane	ND ND	0.0020	mg/Kg wet							
3-Dichloropropane	ND ND	0.0010	mg/Kg wet							
2-Dichloropropane	ND ND	0.0020	mg/Kg wet							
1-Dichloropropene	ND ND	0.0020	mg/Kg wet							
s-1,3-Dichloropropene	ND ND	0.0010	mg/Kg wet							
ans-1,3-Dichloropropene	ND ND	0.0010	mg/Kg wet							
iethyl Ether		0.0010	mg/Kg wet							
iisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
4-Dioxane	ND	0.0010	mg/Kg wet							V-16
thylbenzene	ND ND	0.0020	mg/Kg wet							v-10
exachlorobutadiene	ND	0.0020	mg/Kg wet							
Hexanone (MBK)	ND	0.0020	mg/Kg wet							
	ND									
opropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
ethyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
ethylene Chloride	ND	0.010	mg/Kg wet							
-Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
anhthalene	ND	0.0040	ma/K a wet							

ND

 $0.0040 \quad mg/Kg \ wet$

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B158230 - SW-846 5035											
Blank (B158230-BLK1)				Prepared & A	Analyzed: 09	/13/16					
n-Propylbenzene	ND	0.0020	mg/Kg wet								
Styrene	ND	0.0020	mg/Kg wet								
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet								
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet								
Tetrachloroethylene	ND	0.0020	mg/Kg wet								
Tetrahydrofuran	ND	0.010	mg/Kg wet								
Toluene	ND	0.0020	mg/Kg wet								
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet								
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet								
Trichloroethylene	ND	0.0020	mg/Kg wet								
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet								
1,2,3-Trichloropropane	ND	0.0020	mg/Kg wet								
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet								
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet								
Vinyl Chloride	ND	0.010	mg/Kg wet								
m+p Xylene	ND	0.0040	mg/Kg wet								
o-Xylene	ND	0.0020	mg/Kg wet								
Surrogate: 1,2-Dichloroethane-d4	0.0478		mg/Kg wet	0.0500		95.6	70-130				
Surrogate: Toluene-d8	0.0473		mg/Kg wet	0.0500		94.5	70-130				
Surrogate: 4-Bromofluorobenzene	0.0437		mg/Kg wet	0.0500		87.4	70-130				
LCS (B158230-BS1)				Prepared & A	Analyzed: 09	/13/16					
Acetone	0.328	0.10	mg/Kg wet	0.200		164 *	40-160			L-07	
tert-Amyl Methyl Ether (TAME)	0.0201	0.0010	mg/Kg wet	0.0200		100	70-130				
Benzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130				
Bromobenzene	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130				
Bromochloromethane	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130				
Bromodichloromethane	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130				
Bromoform	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130				
Bromomethane	0.0109	0.010	mg/Kg wet	0.0200		54.3	40-160			L-14	
2-Butanone (MEK)	0.238	0.040	mg/Kg wet	0.200		119	40-160				
n-Butylbenzene	0.0197	0.0020	mg/Kg wet	0.0200		98.7	70-130				
sec-Butylbenzene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130				
tert-Butylbenzene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130				
tert-Butyl Ethyl Ether (TBEE)	0.0181	0.0010	mg/Kg wet	0.0200		90.4	70-130				
Carbon Disulfide	0.0221	0.0060	mg/Kg wet	0.0200		110	70-130				
Carbon Tetrachloride	0.0199	0.0020	mg/Kg wet	0.0200		99.7	70-130				
Chlorobenzene	0.0229	0.0020	mg/Kg wet	0.0200		115	70-130				
Chlorodibromomethane	0.0204	0.0010	mg/Kg wet	0.0200		102	70-130				
Chloroethane	0.0192	0.010	mg/Kg wet	0.0200		96.0	70-130				
Chloroform	0.0188	0.0040	mg/Kg wet	0.0200		93.9	70-130				
Chloromethane	0.0138	0.010	mg/Kg wet	0.0200		69.2	40-160			L-14	
2-Chlorotoluene	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130				
4-Chlorotoluene	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	0.0188	0.0020	mg/Kg wet	0.0200		93.9	70-130				
1,2-Dibromoethane (EDB)	0.0201	0.0010	mg/Kg wet	0.0200		101	70-130				
Dibromomethane	0.0201	0.0020	mg/Kg wet	0.0200		109	70-130				
1,2-Dichlorobenzene	0.0218	0.0020	mg/Kg wet	0.0200		114	70-130				
1,3-Dichlorobenzene	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %l	%REC REC Limits	RPD	RPD Limit	Notes
Batch B158230 - SW-846 5035								-	
LCS (B158230-BS1)				Prepared & A	Analyzed: 09/13/16	<u> </u>			
Dichlorodifluoromethane (Freon 12)	0.0212	0.010	mg/Kg wet	0.0200	10				
,1-Dichloroethane	0.0203	0.0020	mg/Kg wet	0.0200	10				
,2-Dichloroethane	0.0197	0.0020	mg/Kg wet	0.0200	98				
,1-Dichloroethylene	0.0219	0.0040	mg/Kg wet	0.0200	11				
ris-1,2-Dichloroethylene	0.0193	0.0020	mg/Kg wet	0.0200	96				
rans-1,2-Dichloroethylene	0.0199	0.0020	mg/Kg wet	0.0200	99				
,2-Dichloropropane	0.0200	0.0020	mg/Kg wet	0.0200	10				
,3-Dichloropropane	0.0198	0.0010	mg/Kg wet	0.0200	98				
,2-Dichloropropane	0.0176	0.0020	mg/Kg wet	0.0200	88				
,1-Dichloropropene	0.0200	0.0020	mg/Kg wet	0.0200	99				
is-1,3-Dichloropropene	0.0200	0.0010	mg/Kg wet	0.0200	85				
rans-1,3-Dichloropropene	0.0172	0.0010	mg/Kg wet	0.0200	93				
Diethyl Ether	0.0188	0.010	mg/Kg wet	0.0200	96				
iisopropyl Ether (DIPE)	0.0193	0.0010	mg/Kg wet	0.0200	94				
4-Dioxane	0.0188	0.10	mg/Kg wet	0.200	10				V-16
thylbenzene	0.206	0.0020	mg/Kg wet	0.0200	10				¥-10
exachlorobutadiene	0.0201	0.0020	mg/Kg wet	0.0200	12				
Hexanone (MBK)		0.020	mg/Kg wet	0.200	99				
opropylbenzene (Cumene)	0.199	0.0020	mg/Kg wet						
Isopropyltoluene (p-Cymene)	0.0228	0.0020	mg/Kg wet	0.0200	11 97				
ethyl tert-Butyl Ether (MTBE)	0.0196	0.0020	mg/Kg wet	0.0200 0.0200	97				
ethylene Chloride	0.0198	0.0040	mg/Kg wet						
Methyl-2-pentanone (MIBK)	0.0180	0.020	mg/Kg wet	0.0200	90				
aphthalene	0.193	0.020	mg/Kg wet	0.200	96				
•	0.0211			0.0200	10				
Propylbenzene	0.0205	0.0020	mg/Kg wet	0.0200	10				
yrene	0.0197	0.0020	mg/Kg wet	0.0200	98				
1,1,2-Tetrachloroethane	0.0223	0.0020	mg/Kg wet	0.0200	11				
1,2,2-Tetrachloroethane	0.0212	0.0010	mg/Kg wet	0.0200	10				
etrachloroethylene	0.0223	0.0020	mg/Kg wet	0.0200	11				
etrahydrofuran	0.0185	0.010	mg/Kg wet	0.0200	92				
oluene	0.0193	0.0020	mg/Kg wet	0.0200	96				
2,3-Trichlorobenzene	0.0234	0.0020	mg/Kg wet	0.0200	11				
2,4-Trichlorobenzene	0.0224	0.0020	mg/Kg wet	0.0200	11				
1,1-Trichloroethane	0.0180	0.0020	mg/Kg wet	0.0200	90				
1,2-Trichloroethane	0.0215	0.0020	mg/Kg wet	0.0200	10				
ichloroethylene	0.0209	0.0020	mg/Kg wet	0.0200	10				
richlorofluoromethane (Freon 11)	0.0198	0.010	mg/Kg wet	0.0200	98				
2,3-Trichloropropane	0.0224	0.0020	mg/Kg wet	0.0200	11				
2,4-Trimethylbenzene	0.0213	0.0020	mg/Kg wet	0.0200	10				
3,5-Trimethylbenzene	0.0191	0.0020	mg/Kg wet	0.0200	95				
inyl Chloride	0.0194	0.010	mg/Kg wet	0.0200	96				
n+p Xylene	0.0405	0.0040	mg/Kg wet	0.0400	10				
Xylene	0.0198	0.0020	mg/Kg wet	0.0200	98	.8 70-130			
urrogate: 1,2-Dichloroethane-d4	0.0458		mg/Kg wet	0.0500	91	.6 70-130			
arrogate: Toluene-d8	0.0495		mg/Kg wet	0.0500	99	.0 70-130			
urrogate: 4-Bromofluorobenzene	0.0483		mg/Kg wet	0.0500	96	.6 70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B158230 - SW-846 5035											
LCS Dup (B158230-BSD1)				Prepared & A	Analyzed: 09/	13/16					
Acetone	0.308	0.10	mg/Kg wet	0.200		154	40-160	6.19	20		
tert-Amyl Methyl Ether (TAME)	0.0190	0.0010	mg/Kg wet	0.0200		95.0	70-130	5.53	20		
Benzene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130	2.53	20		
Bromobenzene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130	0.190	20		
Bromochloromethane	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130	1.47	20		
Bromodichloromethane	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130	3.09	20		
Bromoform	0.0213	0.0020	mg/Kg wet	0.0200		106	70-130	2.14	20		
Bromomethane	0.0125	0.010	mg/Kg wet	0.0200		62.6	40-160	14.2	20	L-14	
2-Butanone (MEK)	0.231	0.040	mg/Kg wet	0.200		116	40-160	2.58	20		
n-Butylbenzene	0.0195	0.0020	mg/Kg wet	0.0200		97.7	70-130	1.02	20		
sec-Butylbenzene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	0.971	20		
tert-Butylbenzene	0.0197	0.0020	mg/Kg wet	0.0200		98.4	70-130	2.11	20		
tert-Butyl Ethyl Ether (TBEE)	0.0170	0.0010	mg/Kg wet	0.0200		85.0	70-130	6.16	20		
Carbon Disulfide	0.0218	0.0060	mg/Kg wet	0.0200		109	70-130	1.28	20		
Carbon Tetrachloride	0.0191	0.0020	mg/Kg wet	0.0200		95.5	70-130	4.30	20		
Chlorobenzene	0.0231	0.0020	mg/Kg wet	0.0200		115	70-130	0.522	20		
Chlorodibromomethane	0.0206	0.0010	mg/Kg wet	0.0200		103	70-130	0.781	20		
Chloroethane	0.0195	0.010	mg/Kg wet	0.0200		97.6	70-130	1.65	20		
Chloroform	0.0184	0.0040	mg/Kg wet	0.0200		92.0	70-130	2.04	20		
Chloromethane	0.0146	0.010	mg/Kg wet	0.0200		72.8	40-160	5.07	20		
2-Chlorotoluene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130	1.08	20		
4-Chlorotoluene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	2.37	20		
1,2-Dibromo-3-chloropropane (DBCP)	0.0179	0.0020	mg/Kg wet	0.0200		89.7	70-130	4.58	20		
1,2-Dibromoethane (EDB)	0.0204	0.0010	mg/Kg wet	0.0200		102	70-130	1.38	20		
Dibromomethane	0.0221	0.0020	mg/Kg wet	0.0200		110	70-130	1.09	20		
1,2-Dichlorobenzene	0.0232	0.0020	mg/Kg wet	0.0200		116	70-130	1.65	20		
1,3-Dichlorobenzene	0.0221	0.0020	mg/Kg wet	0.0200		110	70-130	1.18	20		
1,4-Dichlorobenzene	0.0227	0.0020	mg/Kg wet	0.0200		114	70-130	0.264	20		
Dichlorodifluoromethane (Freon 12)	0.0212	0.010	mg/Kg wet	0.0200		106	40-160	0.283	20		
1,1-Dichloroethane	0.0195	0.0020	mg/Kg wet	0.0200		97.3	70-130	4.23	20		
1,2-Dichloroethane	0.0190	0.0020	mg/Kg wet	0.0200		95.0	70-130	3.62	20		
1,1-Dichloroethylene	0.0216	0.0040	mg/Kg wet	0.0200		108	70-130	1.47	20		
cis-1,2-Dichloroethylene	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130	0.730	20		
trans-1,2-Dichloroethylene	0.0193	0.0020	mg/Kg wet	0.0200		96.6	70-130	2.86	20		
1,2-Dichloropropane	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	0.399	20		
1,3-Dichloropropane	0.0197	0.0010	mg/Kg wet	0.0200		98.5	70-130	0.304	20		
2,2-Dichloropropane	0.0164	0.0020	mg/Kg wet	0.0200		82.2	70-130	6.82	20		
1,1-Dichloropropene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	1.10	20		
cis-1,3-Dichloropropene	0.0168	0.0010	mg/Kg wet	0.0200		83.8	70-130	2.36	20		
trans-1,3-Dichloropropene	0.0179	0.0010	mg/Kg wet	0.0200		89.6	70-130	4.69	20		
Diethyl Ether	0.0187	0.010	mg/Kg wet	0.0200		93.5	70-130	2.95	20		
Diisopropyl Ether (DIPE)	0.0177	0.0010	mg/Kg wet	0.0200		88.3	70-130	6.47	20	37.16	
1,4-Dioxane	0.178	0.10	mg/Kg wet	0.200		88.8	40-160	14.7	20	V-16	
Ethylbenzene Havaaklarahutadiana	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	0.396	20		
Hexachlorobutadiene	0.0239	0.0020	mg/Kg wet	0.0200		120	70-130	2.23	20		
2-Hexanone (MBK)	0.194	0.020 0.0020	mg/Kg wet	0.200		97.2	40-160	2.37	20		
Isopropyltenzene (Cumene)	0.0231		mg/Kg wet	0.0200		115	70-130	1.31	20		
p-Isopropyltoluene (p-Cymene) Mothyl tort, Putyl Ethor (MTPE)	0.0192	0.0020	mg/Kg wet	0.0200		95.8	70-130	2.07	20		
Methyl tert-Butyl Ether (MTBE)	0.0190	0.0040	mg/Kg wet	0.0200		94.8	70-130	4.33	20		
Methylene Chloride 4-Methyl-2-pentanone (MIBK)	0.0172	0.010	mg/Kg wet	0.0200		85.8	70-130	5.00	20		
4-MEUDA-7-DEDISTORE (MISK)	0.193	0.020	mg/Kg wet	0.200		96.4	40-160	0.125	20		

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B158230 - SW-846 5035						,,,,,,,,,				
LCS Dup (B158230-BSD1)]	Prepared & A	Analyzed: 09	/13/16				
n-Propylbenzene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130	1.07	20	
Styrene	0.0197	0.0020	mg/Kg wet	0.0200		98.3	70-130	0.203	20	
1,1,1,2-Tetrachloroethane	0.0221	0.0020	mg/Kg wet	0.0200		111	70-130	0.720	20	
1,1,2,2-Tetrachloroethane	0.0217	0.0010	mg/Kg wet	0.0200		108	70-130	2.05	20	
Tetrachloroethylene	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130	1.51	20	
Tetrahydrofuran	0.0189	0.010	mg/Kg wet	0.0200		94.3	70-130	1.93	20	
Toluene	0.0193	0.0020	mg/Kg wet	0.0200		96.3	70-130	0.415	20	
1,2,3-Trichlorobenzene	0.0235	0.0020	mg/Kg wet	0.0200		118	70-130	0.426	20	
1,2,4-Trichlorobenzene	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130	0.987	20	
1,1,1-Trichloroethane	0.0185	0.0020	mg/Kg wet	0.0200		92.5	70-130	2.74	20	
1,1,2-Trichloroethane	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	5.05	20	
Trichloroethylene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130	0.382	20	
Trichlorofluoromethane (Freon 11)	0.0196	0.010	mg/Kg wet	0.0200		98.1	70-130	0.812	20	
1,2,3-Trichloropropane	0.0231	0.0020	mg/Kg wet	0.0200		116	70-130	3.08	20	
1,2,4-Trimethylbenzene	0.0200	0.0020	mg/Kg wet	0.0200		99.9	70-130	6.58	20	
1,3,5-Trimethylbenzene	0.0190	0.0020	mg/Kg wet	0.0200		95.2	70-130	0.210	20	
Vinyl Chloride	0.0194	0.010	mg/Kg wet	0.0200		96.9	70-130	0.103	20	
m+p Xylene	0.0408	0.0040	mg/Kg wet	0.0400		102	70-130	0.590	20	
o-Xylene	0.0196	0.0020	mg/Kg wet	0.0200		97.9	70-130	0.915	20	
Surrogate: 1,2-Dichloroethane-d4	0.0448		mg/Kg wet	0.0500		89.6	70-130			
Surrogate: Toluene-d8	0.0497		mg/Kg wet	0.0500		99.4	70-130			
Surrogate: 4-Bromofluorobenzene	0.0477		mg/Kg wet	0.0500		95.4	70-130			

Phenanthrene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
·	Result	Liiiit	Omis	Level	Resurt	70KLC	Limits	МЪ	Limit	110103
Batch B158064 - SW-846 3546						1 00/10/1				
Blank (B158064-BLK1)		0.17		Prepared: 09	0/12/16 Anal	yzed: 09/13/1	16			
Acenaphthene	ND	0.17	mg/Kg wet							
Acenaphthylene	ND	0.17	mg/Kg wet							
Acetophenone	ND	0.34	mg/Kg wet							
Aniline	ND	0.34	mg/Kg wet							
Anthracene	ND	0.17	mg/Kg wet							
Benzo(a)anthracene	ND	0.17	mg/Kg wet							
Benzo(a)pyrene	ND	0.17	mg/Kg wet							
Benzo(b)fluoranthene	ND	0.17	mg/Kg wet							
Benzo(g,h,i)perylene	ND	0.17	mg/Kg wet							
Benzo(k)fluoranthene	ND	0.17	mg/Kg wet							
Bis(2-chloroethoxy)methane	ND	0.34	mg/Kg wet mg/Kg wet							
Bis(2-chloroethyl)ether	ND	0.34								
Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	ND	0.34	mg/Kg wet mg/Kg wet							V/ 20
-Bromophenylphenylether	ND	0.34	mg/Kg wet mg/Kg wet							V-20
Bromopnenyipnenyieiner Butylbenzylphthalate	ND	0.34 0.34	mg/Kg wet mg/Kg wet							
I-Chloroaniline	ND		mg/Kg wet							
-Chloronaphthalene	ND	0.66 0.34	mg/Kg wet							
-Chlorophenol	ND		mg/Kg wet							
Chrysene	ND	0.34								
•	ND	0.17	mg/Kg wet							
Dibenz(a,h)anthracene Dibenzofuran	ND	0.17 0.34	mg/Kg wet mg/Kg wet							
Di-n-butylphthalate	ND	0.34	mg/Kg wet							
,2-Dichlorobenzene	ND	0.34	mg/Kg wet							
,3-Dichlorobenzene	ND	0.34	mg/Kg wet							
,4-Dichlorobenzene	ND	0.34	mg/Kg wet							
,3-Dichlorobenzidine	ND	0.34	mg/Kg wet							
,4-Dichlorophenol	ND	0.17	mg/Kg wet							
Diethylphthalate	ND	0.34	mg/Kg wet							
,4-Dimethylphenol	ND	0.34	mg/Kg wet							
Dimethylphthalate	ND	0.34	mg/Kg wet							
,4-Dinitrophenol	ND	0.66	mg/Kg wet							
,4-Dinitrotoluene	ND	0.34	mg/Kg wet							
,,,Dinitrotoluene	ND		mg/Kg wet							
Di-n-octylphthalate	ND ND	0.34	mg/Kg wet							V-20
,2-Diphenylhydrazine (as Azobenzene)	ND ND	0.34	mg/Kg wet							v -20
Fluoranthene	ND ND	0.17	mg/Kg wet							
Fluorene	ND	0.17	mg/Kg wet							
Hexachlorobenzene	ND	0.34	mg/Kg wet							
Hexachlorobutadiene	ND ND	0.34	mg/Kg wet							
Hexachloroethane	ND ND	0.34	mg/Kg wet							
ndeno(1,2,3-cd)pyrene	ND ND	0.17	mg/Kg wet							
sophorone	ND ND	0.34	mg/Kg wet							
-Methylnaphthalene	ND ND	0.17	mg/Kg wet							
-Methylphenol	ND	0.34	mg/Kg wet							
4/4-Methylphenol	ND ND	0.34	mg/Kg wet							
Vaphthalene	ND ND	0.17	mg/Kg wet							
Vitrobenzene	ND ND	0.34	mg/Kg wet							
2-Nitrophenol	ND ND	0.34	mg/Kg wet							
-Nitrophenol	ND ND	0.66	mg/Kg wet							
entachlorophenol	ND ND	0.34	mg/Kg wet							
A	ND	0.54	115 WOL							

ND

0.17 mg/Kg wet

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B158064 - SW-846 3546										
Blank (B158064-BLK1)				Prepared: 09	9/12/16 Analy	yzed: 09/13/1	6			
Phenol	ND	0.34	mg/Kg wet							
Pyrene	ND	0.17	mg/Kg wet							
,2,4-Trichlorobenzene	ND	0.34	mg/Kg wet							
2,4,5-Trichlorophenol	ND	0.34	mg/Kg wet							
,4,6-Trichlorophenol	ND	0.34	mg/Kg wet							
Surrogate: 2-Fluorophenol	6.62		mg/Kg wet	6.67		99.2	30-130			
Surrogate: Phenol-d6	6.67		mg/Kg wet	6.67		100	30-130			
urrogate: Nitrobenzene-d5	3.18		mg/Kg wet	3.33		95.4	30-130			
urrogate: 2-Fluorobiphenyl	3.24		mg/Kg wet	3.33		97.4	30-130			
urrogate: 2,4,6-Tribromophenol	6.03		mg/Kg wet	6.67		90.5	30-130			
urrogate: p-Terphenyl-d14	4.32		mg/Kg wet	3.33		129	30-130			
CS (B158064-BS1)				Prepared: 09	9/12/16 Analy	yzed: 09/13/1	16			
cenaphthene	1.75	0.17	mg/Kg wet	1.67		105	40-140			
cenaphthylene	1.67	0.17	mg/Kg wet	1.67		100	40-140			
cetophenone	1.48	0.34	mg/Kg wet	1.67		88.8	40-140			
niline	0.965	0.34	mg/Kg wet	1.67		57.9	40-140			
nthracene	1.68	0.17	mg/Kg wet	1.67		101	40-140			
enzo(a)anthracene	1.75	0.17	mg/Kg wet	1.67		105	40-140			
enzo(a)pyrene	1.81	0.17	mg/Kg wet	1.67		109	40-140			
enzo(b)fluoranthene	1.71	0.17	mg/Kg wet	1.67		102	40-140			
enzo(g,h,i)perylene	1.79	0.17	mg/Kg wet	1.67		108	40-140			
enzo(k)fluoranthene	1.69	0.17	mg/Kg wet	1.67		101	40-140			
is(2-chloroethoxy)methane	1.74	0.34	mg/Kg wet	1.67		105	40-140			
is(2-chloroethyl)ether	1.64	0.34	mg/Kg wet	1.67		98.6	40-140			
is(2-chloroisopropyl)ether	1.52	0.34	mg/Kg wet	1.67		91.2	40-140			
is(2-Ethylhexyl)phthalate	2.04	0.34	mg/Kg wet	1.67		122	40-140			V-20
Bromophenylphenylether	1.74	0.34	mg/Kg wet	1.67		104	40-140			
utylbenzylphthalate	1.90	0.34	mg/Kg wet	1.67		114	40-140			
-Chloroaniline	0.979	0.66	mg/Kg wet	1.67		58.7	15-140			
Chloronaphthalene	1.58	0.34	mg/Kg wet	1.67		95.1	40-140			
-Chlorophenol	1.56	0.34	mg/Kg wet	1.67		93.9	30-130			
hrysene	1.63	0.17	mg/Kg wet	1.67		97.7	40-140			
ibenz(a,h)anthracene	1.74	0.17	mg/Kg wet	1.67		104	40-140			
ibenzofuran	1.77	0.34	mg/Kg wet	1.67		106	40-140			
ri-n-butylphthalate	1.71	0.34	mg/Kg wet	1.67		102	40-140			
,2-Dichlorobenzene	1.46	0.34	mg/Kg wet	1.67		87.7	40-140			
,3-Dichlorobenzene	1.40	0.34	mg/Kg wet	1.67		84.7	40-140			
,4-Dichlorobenzene	1.41	0.34	mg/Kg wet	1.67		86.3	40-140			
3-Dichlorobenzidine	1.12	0.17	mg/Kg wet	1.67		67.5	40-140			
4-Dichlorophenol	1.63	0.34	mg/Kg wet	1.67		98.0	30-130			
riethylphthalate	1.71	0.34	mg/Kg wet	1.67		103	40-140			
4-Dimethylphenol	1.74	0.34	mg/Kg wet	1.67		105	30-130			
imethylphthalate	1.77	0.34	mg/Kg wet	1.67		106	40-140			
4-Dinitrophenol	0.833	0.66	mg/Kg wet	1.67		50.0	15-140			
4-Dinitrotoluene	0.833	0.34	mg/Kg wet	1.67		104	40-140			
,6-Dinitrotoluene		0.34	mg/Kg wet	1.67		104	40-140			
vi-n-octylphthalate	1.71	0.34	mg/Kg wet	1.67		113	40-140			V-20
,2-Diphenylhydrazine (as Azobenzene)	1.88 1.77	0.34	mg/Kg wet	1.67		106	40-140			v -20
luoranthene		0.17	mg/Kg wet	1.67		95.2	40-140			
luorene	1.59	0.17	mg/Kg wet							
Iexachlorobenzene	1.67 1.67	0.17	mg/Kg wet	1.67 1.67		99.9 100	40-140 40-140			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B158064 - SW-846 3546										
.CS (B158064-BS1)			1	Prepared: 09	7/12/16 Analy	yzed: 09/13/	16			
Hexachlorobutadiene	1.64	0.34	mg/Kg wet	1.67		98.2	40-140			
Hexachloroethane	1.48	0.34	mg/Kg wet	1.67		88.6	40-140			
ndeno(1,2,3-cd)pyrene	1.79	0.17	mg/Kg wet	1.67		108	40-140			
sophorone	1.72	0.34	mg/Kg wet	1.67		103	40-140			
-Methylnaphthalene	1.76	0.17	mg/Kg wet	1.67		105	40-140			
-Methylphenol	1.46	0.34	mg/Kg wet	1.67		87.7	30-130			
/4-Methylphenol	1.59	0.34	mg/Kg wet	1.67		95.5	30-130			
aphthalene	1.60	0.17	mg/Kg wet	1.67		95.8	40-140			
itrobenzene	1.65	0.34	mg/Kg wet	1.67		98.8	40-140			
Nitrophenol	1.63	0.34	mg/Kg wet	1.67		98.0	30-130			
Nitrophenol	1.63	0.66	mg/Kg wet	1.67		97.7	15-140			
entachlorophenol	1.39	0.34	mg/Kg wet	1.67		83.2	30-130			
henanthrene	1.68	0.17	mg/Kg wet	1.67		101	40-140			
henol	1.57	0.34	mg/Kg wet	1.67		94.1	15-140			
yrene	1.75	0.17	mg/Kg wet	1.67		105	40-140			
2,4-Trichlorobenzene	1.64	0.34	mg/Kg wet	1.67		98.2	40-140			
4,5-Trichlorophenol	1.65	0.34	mg/Kg wet	1.67		98.7	30-130			
4,6-Trichlorophenol	1.63	0.34	mg/Kg wet	1.67		104	30-130			
<u> </u>		0.5.								
urrogate: 2-Fluorophenol	6.72		mg/Kg wet	6.67		101	30-130			
urrogate: Phenol-d6	6.80		mg/Kg wet	6.67		102	30-130			
urrogate: Nitrobenzene-d5	3.43		mg/Kg wet	3.33		103	30-130			
urrogate: 2-Fluorobiphenyl	3.46		mg/Kg wet	3.33		104	30-130			
urrogate: 2,4,6-Tribromophenol	6.98		mg/Kg wet	6.67		105	30-130			
urrogate: p-Terphenyl-d14	4.22		mg/Kg wet	3.33		127	30-130			
CS Dup (B158064-BSD1)]	Prepared: 09	0/12/16 Analy	yzed: 09/13/	16			
cenaphthene	1.72	0.17	mg/Kg wet	1.67		103	40-140	1.48	30	
cenaphthylene	1.65	0.17	mg/Kg wet	1.67		98.9	40-140	1.33	30	
cetophenone	1.44	0.34	mg/Kg wet	1.67		86.2	40-140	2.95	30	
niline	0.939	0.34	mg/Kg wet	1.67		56.3	40-140	2.73	30	
nthracene	1.72	0.17	mg/Kg wet	1.67		103	40-140	2.08	30	
enzo(a)anthracene	1.79	0.17	mg/Kg wet	1.67		107	40-140	2.13	30	
enzo(a)pyrene	1.86	0.17	mg/Kg wet	1.67		111	40-140	2.40	30	
enzo(b)fluoranthene	1.77	0.17	mg/Kg wet	1.67		106	40-140	3.64	30	
enzo(g,h,i)perylene	1.92	0.17	mg/Kg wet	1.67		115	40-140	6.87	30	
enzo(k)fluoranthene	1.72	0.17	mg/Kg wet	1.67		103	40-140	1.76	30	
is(2-chloroethoxy)methane	1.65	0.34	mg/Kg wet	1.67		99.0	40-140	5.40	30	
is(2-chloroethyl)ether	1.49	0.34	mg/Kg wet	1.67		89.6	40-140	9.58	30	
is(2-chloroisopropyl)ether	1.46	0.34	mg/Kg wet	1.67		87.9	40-140	3.73	30	
is(2-Ethylhexyl)phthalate	2.08	0.34	mg/Kg wet	1.67		125	40-140	1.82	30	V-20
Bromophenylphenylether	1.77	0.34	mg/Kg wet	1.67		106	40-140	1.88	30	1.20
utylbenzylphthalate	1.77	0.34	mg/Kg wet	1.67		120	40-140	4.50	30	
Chloroaniline	0.861	0.66	mg/Kg wet	1.67		51.7	15-140	12.8	30	
-Chloronaphthalene	1.64	0.34	mg/Kg wet	1.67		98.1	40-140	3.13	30	
Chlorophenol		0.34	mg/Kg wet	1.67			30-130	1.48	30	
•	1.54	0.34	mg/Kg wet			92.5				
hrysene	1.69			1.67		101	40-140	3.64	30	
ibenz(a,h)anthracene	1.82	0.17	mg/Kg wet	1.67		109	40-140	4.20	30	
ibenzofuran	1.74	0.34	mg/Kg wet	1.67		104	40-140	1.71	30	
	1.74	0.34	mg/Kg wet	1.67		105	40-140	2.01	30	
• •		0.01								
,2-Dichlorobenzene	1.40	0.34	mg/Kg wet	1.67		84.2	40-140	4.00	30	
Di-n-butylphthalate ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene	1.40 1.34	0.34 0.34 0.34	mg/Kg wet mg/Kg wet mg/Kg wet	1.67 1.67 1.67		84.2 80.6	40-140 40-140	4.00 4.96	30 30 30	

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B158064 - SW-846 3546										
LCS Dup (B158064-BSD1)			1	Prepared: 09)/12/16 Anal	yzed: 09/13/	16			
3,3-Dichlorobenzidine	1.08	0.17	mg/Kg wet	1.67		64.7	40-140	4.17	30	
2,4-Dichlorophenol	1.58	0.34	mg/Kg wet	1.67		94.5	30-130	3.64	30	
Diethylphthalate	1.70	0.34	mg/Kg wet	1.67		102	40-140	0.763	30	
2,4-Dimethylphenol	1.68	0.34	mg/Kg wet	1.67		101	30-130	3.84	30	
Dimethylphthalate	1.77	0.34	mg/Kg wet	1.67		106	40-140	0.320	30	
2,4-Dinitrophenol	0.759	0.66	mg/Kg wet	1.67		45.5	15-140	9.38	30	
2,4-Dinitrotoluene	1.69	0.34	mg/Kg wet	1.67		101	40-140	2.72	30	
2,6-Dinitrotoluene	1.80	0.34	mg/Kg wet	1.67		108	40-140	5.37	30	
Di-n-octylphthalate	1.89	0.34	mg/Kg wet	1.67		113	40-140	0.532	30	V-20
1,2-Diphenylhydrazine (as Azobenzene)	1.83	0.34	mg/Kg wet	1.67		110	40-140	3.63	30	
Fluoranthene	1.60	0.17	mg/Kg wet	1.67		95.9	40-140	0.753	30	
Fluorene	1.69	0.17	mg/Kg wet	1.67		101	40-140	1.25	30	
Hexachlorobenzene	1.76	0.34	mg/Kg wet	1.67		105	40-140	4.90	30	
Hexachlorobutadiene	1.54	0.34	mg/Kg wet	1.67		92.5	40-140	6.00	30	
Hexachloroethane	1.41	0.34	mg/Kg wet	1.67		84.3	40-140	4.90	30	
ndeno(1,2,3-cd)pyrene	1.90	0.17	mg/Kg wet	1.67		114	40-140	5.99	30	
sophorone	1.64	0.34	mg/Kg wet	1.67		98.3	40-140	4.88	30	
2-Methylnaphthalene	1.67	0.17	mg/Kg wet	1.67		100	40-140	5.10	30	
2-Methylphenol	1.48	0.34	mg/Kg wet	1.67		89.0	30-130	1.45	30	
3/4-Methylphenol	1.60	0.34	mg/Kg wet	1.67		96.3	30-130	0.814	30	
Naphthalene	1.50	0.17	mg/Kg wet	1.67		90.2	40-140	6.04	30	
Nitrobenzene	1.52	0.34	mg/Kg wet	1.67		91.4	40-140	7.80	30	
2-Nitrophenol	1.57	0.34	mg/Kg wet	1.67		94.1	30-130	4.00	30	
4-Nitrophenol	1.63	0.66	mg/Kg wet	1.67		98.0	15-140	0.347	30	
Pentachlorophenol	1.44	0.34	mg/Kg wet	1.67		86.3	30-130	3.61	30	
Phenanthrene	1.71	0.17	mg/Kg wet	1.67		103	40-140	1.95	30	
Phenol	1.53	0.34	mg/Kg wet	1.67		91.8	15-140	2.45	30	
Pyrene	1.83	0.17	mg/Kg wet	1.67		110	40-140	4.22	30	
1,2,4-Trichlorobenzene	1.52	0.34	mg/Kg wet	1.67		91.2	40-140	7.43	30	
2,4,5-Trichlorophenol	1.69	0.34	mg/Kg wet	1.67		101	30-130	2.74	30	
2,4,6-Trichlorophenol	1.79	0.34	mg/Kg wet	1.67		108	30-130	3.33	30	
Surrogate: 2-Fluorophenol	6.47		mg/Kg wet	6.67		97.1	30-130			
Surrogate: Phenol-d6	6.71		mg/Kg wet	6.67		101	30-130			
Surrogate: Nitrobenzene-d5	3.23		mg/Kg wet	3.33		97.0	30-130			
Surrogate: 2-Fluorobiphenyl	3.42		mg/Kg wet	3.33		103	30-130			
Surrogate: 2,4,6-Tribromophenol	7.07		mg/Kg wet	6.67		106	30-130			
Surrogate: p-Terphenyl-d14	4.42		mg/Kg wet	3.33		133 *	30-130			S-07

QUALITY CONTROL

Source

Spike

%REC

RPD

Polychlorinated Biphenyls By GC/ECD - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B158062 - SW-846 3546										
Blank (B158062-BLK1)				Prepared: 09	/12/16 Anal	yzed: 09/13/1	6			
Aroclor-1016	ND	0.020	mg/Kg wet							
Aroclor-1016 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1221	ND	0.020	mg/Kg wet							
Aroclor-1221 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1232	ND	0.020	mg/Kg wet							
aroclor-1232 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1242	ND	0.020	mg/Kg wet							
Aroclor-1242 [2C]	ND	0.020	mg/Kg wet							
aroclor-1248	ND	0.020	mg/Kg wet							
Aroclor-1248 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1254	ND	0.020	mg/Kg wet							
aroclor-1254 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1260	ND	0.020	mg/Kg wet							
aroclor-1260 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1262	ND	0.020	mg/Kg wet							
aroclor-1262 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1268	ND	0.020	mg/Kg wet							
Aroclor-1268 [2C]	ND	0.020	mg/Kg wet							
Surrogate: Decachlorobiphenyl	0.228		mg/Kg wet	0.200		114	30-150			
urrogate: Decachlorobiphenyl [2C]	0.241		mg/Kg wet	0.200		121	30-150			
Surrogate: Tetrachloro-m-xylene	0.186		mg/Kg wet	0.200		93.0	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.177		mg/Kg wet	0.200		88.6	30-150			
.CS (B158062-BS1)				Prepared: 09	/12/16 Anal	yzed: 09/13/1	6			
aroclor-1016	0.20	0.020	mg/Kg wet	0.200		101	40-140			
roclor-1016 [2C]	0.20	0.020	mg/Kg wet	0.200		102	40-140			
roclor-1260	0.19	0.020	mg/Kg wet	0.200		95.7	40-140			
aroclor-1260 [2C]	0.20	0.020	mg/Kg wet	0.200		101	40-140			
Surrogate: Decachlorobiphenyl	0.239		mg/Kg wet	0.200		120	30-150			
urrogate: Decachlorobiphenyl [2C]	0.248		mg/Kg wet	0.200		124	30-150			
urrogate: Tetrachloro-m-xylene	0.206		mg/Kg wet	0.200		103	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.185		mg/Kg wet	0.200		92.7	30-150			
.CS Dup (B158062-BSD1)				Prepared: 09	/12/16 Anal	yzed: 09/13/1	6			
Aroclor-1016	0.19	0.020	mg/Kg wet	0.200		96.7	40-140	4.15	30	
Aroclor-1016 [2C]	0.20	0.020	mg/Kg wet	0.200		98.5	40-140	3.57	30	
Aroclor-1260	0.18	0.020	mg/Kg wet	0.200		92.2	40-140	3.78	30	
Aroclor-1260 [2C]	0.19	0.020	mg/Kg wet	0.200		97.4	40-140	3.61	30	
Surrogate: Decachlorobiphenyl	0.230		mg/Kg wet	0.200		115	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.243		mg/Kg wet	0.200		121	30-150			
Surrogate: Tetrachloro-m-xylene	0.198		mg/Kg wet	0.200		99.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.182		mg/Kg wet	0.200		91.0	30-150			

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - Quality Control

		Reporting		Spike	Source			%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%RE	С	Limits	RPD	Limit	Notes
Batch B158063 - SW-846 3546											
Blank (B158063-BLK1)				Prepared &	Analyzed: 09	9/12/16					
TPH (C9-C36)	ND	8.3	mg/Kg wet								
Surrogate: o-Terphenyl	2.70		mg/Kg wet	3.33		81.1		40-140			
LCS (B158063-BS1)				Prepared &	Analyzed: 09	0/12/16					
TPH (C9-C36)	22.6	8.3	mg/Kg wet	33.3		67.9		40-140			
Surrogate: o-Terphenyl	2.88		mg/Kg wet	3.33		86.4		40-140			
LCS Dup (B158063-BSD1)				Prepared &	Analyzed: 09	0/12/16					
TPH (C9-C36)	21.8	8.3	mg/Kg wet	33.3		65.4		40-140	3.79	30	
Surrogate: o-Terphenyl	2.71		mg/Kg wet	3.33		81.3		40-140			
Matrix Spike (B158063-MS1)	Sou	rce: 16I0369-	-02	Prepared &	Analyzed: 09	0/12/16					
TPH (C9-C36)	576	180	mg/Kg dry	36.0	450	333	*	40-140			MS-19
Surrogate: o-Terphenyl	0.00		mg/Kg dry	3.60			*	40-140			S-01
Matrix Spike Dup (B158063-MSD1)	Sou	rce: 16I0369-	-02	Prepared &	Analyzed: 09	0/12/16					
TPH (C9-C36)	619	180	mg/Kg dry	36.0	450	5 453	*	40-140	7.23	30	MS-19
Surrogate: o-Terphenyl	0.00		mg/Kg dry	3.60			*	40-140			S-01

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B158122 - SW-846 3050B										
Blank (B158122-BLK1)				Prepared: 09	/12/16 Analy	zed: 09/13/	/16			
Arsenic	ND	2.5	mg/Kg wet							
Cadmium	ND	0.25	mg/Kg wet							
Chromium	ND	0.50	mg/Kg wet							
Lead	ND	0.75	mg/Kg wet							
LCS (B158122-BS1)				Prepared: 09	/12/16 Analy	zed: 09/13/	/16			
Arsenic	50.4	5.0	mg/Kg wet	57.0		88.4	77.8-122.1			
Cadmium	70.5	0.50	mg/Kg wet	77.8		90.7	81.9-118.2			
Chromium	60.9	1.0	mg/Kg wet	65.0		93.7	78.7-120.6			
Lead	85.3	1.5	mg/Kg wet	85.6		99.6	82.4-117.8			
LCS Dup (B158122-BSD1)	Prepared: 09/12/16 Analyzed: 09/13/16									
Arsenic	51.7	5.0	mg/Kg wet	57.0		90.7	77.8-122.1	2.55	30	
Cadmium	70.6	0.50	mg/Kg wet	77.8		90.8	81.9-118.2	0.143	30	
Chromium	58.4	1.0	mg/Kg wet	65.0		89.8	78.7-120.6	4.19	30	
Lead	74.8	1.5	mg/Kg wet	85.6		87.4	82.4-117.8	13.1	30	
MRL Check (B158122-MRL1)				Prepared: 09	/12/16 Analy	zed: 09/14/	/16			
Lead	0.756	0.75	mg/Kg wet	0.750		101	80-120			
Batch B158193 - SW-846 7471										
Blank (B158193-BLK1)				Prepared: 09	/13/16 Analy	zed: 09/14	/16			
Mercury	ND	0.025	mg/Kg wet							
LCS (B158193-BS1)				Prepared: 09	/13/16 Analy	zed: 09/14/	/16			
Mercury	12.7	1.9	mg/Kg wet	12.3		104	73.7-126.3			
LCS Dup (B158193-BSD1)				Prepared: 09	/13/16 Analy	zed: 09/14/	/16			
Mercury	13.3	2.0	mg/Kg wet	12.3	·	108	73.7-126.3	4.62	30	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B158089 - % Solids										
Duplicate (B158089-DUP3)	Sour	ce: 16I0369-()1	Prepared: 09	0/12/16 Analy	yzed: 09/13/	16			
% Solids	95.3		% Wt		95.7			0.419	20	
Batch B158294 - SM21-22 2510B Modified										
Blank (B158294-BLK1)				Prepared &	Analyzed: 09	/14/16				
Specific conductance	ND	2.0	μmhos/cm							
LCS (B158294-BS1)				Prepared &	Analyzed: 09	/14/16				
Specific conductance	220		μmhos/cm	234		92.1	90.6-110			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

SW-846 8082A

Lab Sample ID:	Sample ID: B158062-BS1		Date(s) Analyzed:	09/13/2016	09/13/	2016
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID·	(mm)	GC Column (2)		ID·	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%D
7,07,2112	JOE	111	FROM	TO	OONOLIVITUUTION	700
Aroclor-1016	1	0.00	0.00	0.00	0.20	
	2	0.00	0.00	0.00	0.20	1
Aroclor-1260	1	0.00	0.00	0.00	0.19	
	2	0.00	0.00	0.00	0.20	5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

	_	
LCS	Dup	

SW-846 8082A

Lab Sample ID:	B158062-BSD1		Date(s) Analyzed:	09/13/2016	09/13	/2016
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%D
7.00.2112	002		FROM	TO	00110211111111111111	705
Aroclor-1016	1	0.00	0.00	0.00	0.19	
	2	0.00	0.00	0.00	0.20	4
Aroclor-1260	1	0.00	0.00	0.00	0.18	
	2	0.00	0.00	0.00	0.19	3

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit
DL	Method Detection Limit
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
MS-19	Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.
O-32	A dilution was performed as part of the standard analytical procedure.
S-01	The surrogate recovery for this sample is not available due to sample dilution below the surrogate reporting limit required from high analyte concentration and/or matrix interferences.
S-07	One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are $> 10\%$.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 6010C-D in Soil		
Arsenic	CT,NH,NY,ME,VA,NC	
Cadmium	CT,NH,NY,ME,VA,NC	
Chromium	CT,NH,NY,ME,VA,NC	
Lead	CT,NH,NY,AIHA,ME,VA,NC	
SW-846 7471B in Soil		
	GTANIAN VAIG MENT	
Mercury	CT,NH,NY,NC,ME,VA	
SW-846 8082A in Soil		
Aroclor-1016	CT,NH,NY,NC,ME,VA	
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1221	CT,NH,NY,NC,ME,VA	
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1232	CT,NH,NY,NC,ME,VA	
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1242	CT,NH,NY,NC,ME,VA	
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1248	CT,NH,NY,NC,ME,VA	
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1254	CT,NH,NY,NC,ME,VA	
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1260	CT,NH,NY,NC,ME,VA	
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA	
Aroclor-1262	NH,NY,NC,ME,VA	
Aroclor-1262 [2C]	NH,NY,NC,ME,VA	
Aroclor-1268	NH,NY,NC,ME,VA	
Aroclor-1268 [2C]	NH,NY,NC,ME,VA	
SW-846 8260C in Soil		
Acetone	CT,NH,NY,ME	
Benzene	CT,NH,NY,ME	
Bromobenzene	NH,NY,ME	
Bromochloromethane	NH,NY,ME	
Bromodichloromethane	CT,NH,NY,ME	
Bromoform	CT,NH,NY,ME	
Bromomethane	CT,NH,NY,ME	
2-Butanone (MEK)	CT,NH,NY,ME	
n-Butylbenzene	CT,NH,NY,ME	
sec-Butylbenzene	CT,NH,NY,ME	
tert-Butylbenzene	CT,NH,NY,ME	
Carbon Disulfide	CT,NH,NY,ME	
Carbon Tetrachloride	CT,NH,NY,ME	
Chlorobenzene	CT,NH,NY,ME	
Chlorodibromomethane	CT,NH,NY,ME	
Chloroethane	CT,NH,NY,ME	
Chloroform	CT,NH,NY,ME	
Chloromethane	CT,NH,NY,ME	
2-Chlorotoluene	CT,NH,NY,ME	
4-Chlorotoluene	CT,NH,NY,ME	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260C in Soil		
Dibromomethane	NH,NY,ME	
1,2-Dichlorobenzene	CT,NH,NY,ME	
1,3-Dichlorobenzene	CT,NH,NY,ME	
1,4-Dichlorobenzene	CT,NH,NY,ME	
Dichlorodifluoromethane (Freon 12)	NY,ME	
1,1-Dichloroethane	CT,NH,NY,ME	
1,2-Dichloroethane	CT,NH,NY,ME	
1,1-Dichloroethylene	CT,NH,NY,ME	
cis-1,2-Dichloroethylene	CT,NH,NY,ME	
trans-1,2-Dichloroethylene	CT,NH,NY,ME	
1,2-Dichloropropane	CT,NH,NY,ME	
1,3-Dichloropropane	NH,NY,ME	
2,2-Dichloropropane	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME	
trans-1,3-Dichloropropene	CT,NH,NY,ME	
Ethylbenzene	CT,NH,NY,ME	
Hexachlorobutadiene	NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
p-Isopropyltoluene (p-Cymene)	NH,NY	
Methyl tert-Butyl Ether (MTBE)	NY	
Methylene Chloride	CT,NH,NY,ME	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	
Naphthalene	NH,NY,ME	
n-Propylbenzene	NH,NY	
Styrene	CT,NH,NY,ME	
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	
Toluene	CT,NH,NY,ME	
1,2,4-Trichlorobenzene	NH,NY,ME	
1,1,1-Trichloroethane	CT,NH,NY,ME	
1,1,2-Trichloroethane	CT,NH,NY,ME	
Trichloroethylene	CT,NH,NY,ME	
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME	
1,2,3-Trichloropropane	NH,NY,ME	
1,2,4-Trimethylbenzene	CT,NH,NY,ME	
1,3,5-Trimethylbenzene	CT,NH,NY,ME	
Vinyl Chloride	CT,NH,NY,ME	
m+p Xylene	CT,NH,NY,ME	
o-Xylene	CT,NH,NY,ME	
SW-846 8270D in Soil		
Acenaphthene	CT,NY,NH	
Acenaphthylene	CT,NY,NH	
Acetophenone	NY,NH	

CERTIFICATIONS

Certified Analyses included in this Report

Asiline	Analyte	Certifications
Authoreces	SW-846 8270D in Soil	
Authoreces	Aniline	NY NH
Benzo(a)parlameces CTNY.NII Benzo(a)prome CTNY.NII Benzo(a)prome CTNY.NII Benzo(a)prome CTNY.NII Benzo(a)prome CTNY.NII Bist2-deborechow)mediane CTNY.NII 4-Choramaline CTNY.NII 2-Choramaline CTNY.NII 2-Choramaline CTNY.NII 2-Choramaline CTNY.NII Diocazachura CTNY.NII Diocazachura CTNY.NII Diocazachura CTNY.NII 1-3-Dichloroberozee NY.NI 1-3-Dichloroberozee NY.NI 1-4-Dichloroberozee NY.NI 2-4-Dichloroberozee CTNY.NII 2-4-Din		
Bezon(pluyorem) Criny Nil Bezon(pluyorem) Criny Nil Chievan(pluyorem) Criny Nil Chievan(pluyorem) Criny Nil Bezon(pluyorem)		
Benor(s) Denor(s) Denor(s)		
Benoticy Denoticy Denoticy		
Benock@thoreanthre CT.NY.NH Bisic_c-chlorocythouthe CT.NY.NH Bisic_c-chlorocythylather CT.NY.NH Bisic_c-thoroscyreplythather CT.NY.NH Bisic_c-thoroscyreplythather CT.NY.NH Bisic_c-thoryberylphthalate CT.NY.NH Hunylbersylphthalate CT.NY.NH 2.Chlorocraphthalate CT.NY.NH 2.Chlorocraphthalate CT.NY.NH 2.Chlorocraphthalate CT.NY.NH Dibean(a,h)anthracen CT.NY.NH Dibean(a,h)anthracen CT.NY.NH Dibean(a,h)anthracen CT.NY.NH Dibean(a,h)anthracen CT.NY.NH 1.2-Dichlorobeanthra CT.NY.NH 1.2-Dichlorobeanthra CT.NY.NH 1.2-Dichlorobeanthra CT.NY.NH 3.3-Dichlorobeanthra CT.NY.NH 3.3-Dichlorobeanthra CT.NY.NH 3.4-Dichlorobeanthra CT.NY.NH 2.4-Dimitrobluphench CT.NY.NH Dimitroblyphench CT.NY.NH Dimitrobluphench CT.NY.NH 1.2-Dimitroblure CT.NY.NH 2.4-Dimitroblu		
BisCa-blorockny/methane CTNY.NH BisCa-blorockny/methane CTNY.NH BisCa-blorockny/methane CTNY.NH BisCa-blorockny/methane CTNY.NH BisCa-blorockny/methane CTNY.NH 4-floromaphina/methane CTNY.NH 2-Chlorocaphina/methane CTNY.NH 2-Chlorocaphina/methane CTNY.NH Chysica CTNY.NH Chysica CTNY.NH Dibural/kamen CTNY.NH Di-a-buly/phthalale CTNY.NH 1-2-Dichlorobenzame NY.NH 1-3-Dichlorobenzame NY.NH 1-3-Dichlorobenzame NY.NH 1-4-Dichlorobenzame NY.NH 2-4-Directly-phenol CTNY.NH Deshydphthalae CTNY.NH 2-4-Directly-phenol CTNY.NH 2-4-Directly-phenol CTNY.NH 2-4-Directly-phenol CTNY.NH 2-4-Directly-phenol CTNY.NH 2-4-Directly-phenol CTNY.NH 2-4-Directly-phenol CTNY.NH 1-1-Directly-phenol CTNY.NH 2-4-Direct		
Bosic-Achionosopropilecher CT.NY.NH Bosic-Achionisopropilecher CT.NY.NH Bosic-Achionisopropilecher CT.NY.NH Bosic-Achionisopropilecher CT.NY.NH Bost-Achionisopropilecherylethiatie CT.NY.NH Butyleroryphinalitie CT.NY.NH 2-Chloromphinalene CT.NY.NH 2-Chloromphinalene CT.NY.NH 2-Chloromphinalene CT.NY.NH Dibenozia/janifuracene CT.NY.NH Dibenozia/janifuracene CT.NY.NH 1-2-Delalorobeazane NY.NH 1,3-Delalorobeazane NY.NH 1,3-Delalorobeazane NY.NH 1,4-Delalorobeazane NY.NH 2,4-Delalorobeazane NY.NH 2,4-Delalorobeazane NY.NH 2,4-Delalorobeazane CT.NY.NH 2,4-Delalorobeazane CT.NY.NH 2,4-Denetrylphinalate CT.NY.NH 2,4-Denetrylphinalate CT.NY.NH 2,4-Denetrylphinalate CT.NY.NH 2,4-Diatrorobeane CT.NY.NH 1-2-Deplacylphinalate CT.NY.NH 1-2-Lopiaportylphin		
Bis(2-chloroispropyleher) CTNY.NH Bis(2-bitylhecylpithalate CTNY.NH 4-Brompheryleheryleher CTNY.NH 4-Chloroaniline CTNY.NH 2-Chlorophanol CTNY.NH 2-Chlorophanol CTNY.NH Dibern/Labarde CTNY.NH Dibern/Labarde CTNY.NH Dibern/Labarde CTNY.NH Dibern/Labarde CTNY.NH 1-2-Dichlorobenzene NY.NH 1-3-Dichlorobenzene NY.NH 1-3-Dichlorobenzene NY.NH 1-4-Dichlorobenzene NY.NH 2-4-Dichlorophenol CTNY.NH 2-4-Directripherol CTNY.NH 1-1-Culpheryllydrazine (is Azobenzen		
Bis(2-Ethy they) phythulate CT.NY.NI 4-Bromopheny pheny-plether CT.NY.NI Buythensy phathalate CT.NY.NI 4-Chloronaphtulaten CT.NY.NI 2-Chlorophenol CT.NY.NI Chysene CT.NY.NI Dbernach Abunthracene CT.NY.NI Dbernach Jamithracene CT.NY.NI Dbernach Jamithracene CT.NY.NI 1-2-belarobenzene NY.NI 1-3-Dichlorobenzene NY.NI 1-3-Dichlorobenzene NY.NI 3-3-Dichlorobenzene NY.NI 3-4-Dichlorobenzene NY.NI 2-4-Dichlorobenzene NY.NI 2-4-Dichlorobenzene NY.NI 2-4-Dichlorobenzene CT.NY.NI 2-4-Dinicroblyaphanlate CT.NY.NI 2-4-Dinicroblyaphanlate CT.NY.NI 2-4-Dinicrobluene CT.NY.NI 2-6-Dinicrobluene CT.NY.NI 2-6-Dinicrobluene CT.NY.NI 1-0cxylphthalate CT.NY.NI 1-0cxylphthalate CT.NY.NI 1-0cxylphthalate CT.NY.NI		
Bory/benzylphthalate CTNY.NH 4-Chicoroanine CTNY.NH 2-Chicoroaphthalene CTNY.NH 2-Chicorophthalene CTNY.NH Chrysene CTNY.NH Dibezzufa.Njanthracene CTNY.NH Discharoforma CTNY.NH Discharoforma CTNY.NH 1-2-Dischorobenzene NY.NH 1,3-Dichlorobenzene NY.NH 3,3-Dischorobenzene NY.NH 3,3-Dischorobenzene NY.NH 3,4-Dischorobenzene NY.NH 2,4-Dischorobenzene CTNY.NH 2,4-Dischorobenzene CTNY.NH 2,4-Dischorobenzene CTNY.NH 2,4-Dischorobenzene CTNY.NH 2,4-Dischorobenzene CTNY.NH 2,4-Dimitroblaene CTNY.NH 2,4-Dimitroblaene CTNY.NH 1,2-Diphenylhydrazine (as Azobenzene) NY.NH 1-Eucardinoroblaene CTNY.NH 1-Eucardinoroblaene CTNY.NH 1-Eucardinoroblaene CTNY.NH 1-Eucardinoroblaene CTNY.NH 1-Eucardinoroblaene </td <td></td> <td>CT,NY,NH</td>		CT,NY,NH
4-Chloromiline CT,NY,NH 2-Chlorophenol CT,NY,NH Chlorophenol CT,NY,NH Dibenz(a,Djamfracene CT,NY,NH Dibenz(a,Djamfracene) CT,NY,NH Dibenz(a,Djamfracene) CT,NY,NH 1,3-Dichlorobenzene NY,NH 1,3-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 2,4-Dichlorobenzene CT,NY,NH 2,4-Dichlorophenol CT,NY,NH 2,4-Dinthylphenol CT,NY,NH 2,4-Dinthylphenol CT,NY,NH 2,4-Dinthylphenol CT,NY,NH 2,4-Dintropluene CT,NY,NH 2,4-Dintropluene CT,NY,NH 2,4-Dintropluene CT,NY,NH 1,2-Dipintropluene CT,NY,NH 1,2-Dipintropluene </td <td>4-Bromophenylphenylether</td> <td>CT,NY,NH</td>	4-Bromophenylphenylether	CT,NY,NH
2-Chtoroapphthalene CT,NY,NH 2-Chtorophenol CT,NY,NII Chrysene CT,NY,NII Dibenz(ab, hunthacene CT,NY,NH Dibenzuduran CT,NY,NH Di-baryphthalane CT,NY,NH 1,2-Dichlorobenzene NY,NH 1,3-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 3,3-Dichlorobenzene NY,NH 2,4-Dichlorobenzene CT,NY,NH 2,4-Dinterbylathalate CT,NY,NH 2,4-Dimterbylathalate CT,NY,NH 2,4-Dimterbylathalate CT,NY,NH 2,4-Dimterobluene CT,NY,NH 2,4-Dimterobluene CT,NY,NH 2,6-Dimterobluene CT,NY,NH 1,6-Diptrobluene CT,NY,NH 1,6-Distrobluene <	Butylbenzylphthalate	CT,NY,NH
2-Chlorophenol CT,NY,NH Chrysene CT,NY,NH Dibenz(a, hambracene) CT,NY,NH Dibenzofrana CT,NY,NH Di-a-butyfaphthalate CT,NY,NH 1,2-Dicklorobenzene NY,NH 1,4-Dicklorobenzene NY,NH 3,3-Dicklorobenzene NY,NH 3,4-Dicklorophenol CT,NY,NH 2,4-Dicklorophenol CT,NY,NH 2,4-Dimetrylphthalate CT,NY,NH 2,4-Dimetrylphthalate CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Hexachlorobutaciene CT,NY,NH Hexachlorobutaciene CT,NY,NH Hexachlorobutaciene CT,NY,NH Hexachlorobutaciene CT,NY,NH Jebersaphthalene CT,NY,NH	4-Chloroaniline	CT,NY,NH
Chrysene CT,NY,NII Dibenz, Abjushtracene CT,NY,NII Dibenzofuran CT,NY,NII 1,3-Dichlorobenzene NY,NII 1,3-Dichlorobenzene NY,NII 1,4-Dichlorobenzene NY,NII 3,3-Dichlorobenzidine CT,NY,NII 2,4-Dichlorophenol CT,NY,NII 2,4-Dichlorophenol CT,NY,NII 2,4-Dimtophylphenol CT,NY,NII 2,4-Dimtophylphenol CT,NY,NII 2,4-Dimtotoluene CT,NY,NII 2,4-Dimtotoluene CT,NY,NII 2,6-Dimtotoluene CT,NY,NII 1,3-Diphenyllydrazine (as Azobenzene) NY,NII 1,0-n-cetylphthalate CT,NY,NII 1,2-Diphenyllydrazine (as Azobenzene) NY,NII 1,0-n-cetylphthalate CT,NY,NII 1,0-n-cetylphthalate CT,NY,NII 1,2-Diphenyllydrazine (as Azobenzene) NY,NII 1-texachlorobatene CT,NY,NII Hexachlorobatene CT,NY,NII Hexachlorobatene CT,NY,NII 1-dexachlorobatene CT,NY,NII 2-Mehylapalhalene	2-Chloronaphthalene	CT,NY,NH
Dibenz(a, h)mthracene CT,NY,NH Dibenzofuran CT,NY,NH Di-n-butylphthalate CT,NY,NH 1,3-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 3,3-Dichlorobenzene NY,NH 3,4-Dichlorobenzidine CT,NY,NH 2,4-Dinchlorophenol CT,NY,NH 2,4-Dinchlylphthalate CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluorane CT,NY,NH Heachlorobrazene CT,NY,NH Hexachlorobrazene CT,NY,NH Hexachlorobrazene CT,NY,NH Hexachlorobrazene CT,NY,NH Leachlorobrazene CT,NY,NH 2-Methylapahthalene CT,NY,NH 2-Methylapahthalene CT,NY,NH 2-Methylapahthalene CT,NY,NH Nybhlaene CT,NY,NH Nybhlaene </td <td>2-Chlorophenol</td> <td>CT,NY,NH</td>	2-Chlorophenol	CT,NY,NH
Dibenzofuran CT,NY,NII Di-butylphthalate CT,NY,NH 1,2-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 3,3-Dichlorobenzidine CT,NY,NH 2,4-Dichlorophenol CT,NY,NH 2,4-Dimethylphenol CT,NY,NH 2,4-Dimethylphenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrotoluene CT,NY,NH 2,4-Dinitrotoluene CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Pluoranthene CT,NY,NH Heachlorobrazine CT,NY,NH Heachlorobrazine CT,NY,NH Heachlorobratiene CT,NY,NH Heachlorobratiene CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3-Methylphenol CT,NY,NH 3-Methylphenol CT,NY,NH 3-Methylphenol CT,NY,NH 3-Mitrophenol <td>Chrysene</td> <td>CT,NY,NH</td>	Chrysene	CT,NY,NH
Di-n-butylphthalate CT,NY,NII 1,2-Dichlorobenzene NY,NH 1,3-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 3,3-Dichlorobenzidine CT,NY,NH 2,4-Dichlorophenol CT,NY,NH 2,4-Dimethylphthalate CT,NY,NH 2,4-Dimethylphthalate CT,NY,NH 2,4-Dimitrobenol CT,NY,NH 2,4-Dimitrobenol CT,NY,NH 2,4-Dimitrobulene CT,NY,NH 2,6-Dinitrobulene CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluorance NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobutadiene CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH 2-Methylphenol CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH 3/4-Me	Dibenz(a,h)anthracene	CT,NY,NH
1,2-Dichlorobenzene NY,NH 1,3-Dichlorobenzene NY,NH 1,4-Dichlorobenzene NY,NH 3,3-Dichlorobenzidine CT,NY,NH 2,4-Dichlorophenol CT,NY,NH Diethylphthalate CT,NY,NH 2,4-Dimithylphenol CT,NY,NH 2,4-Dimitrobluene CT,NY,NH 2,4-Dimitrobluene CT,NY,NH 2,4-Dimitrobluene CT,NY,NH 1,2-Diphenyllhydrazine (as Azobenzene) NY,NH 1,2-Diphenyllhydrazine (as Azobenzene) NY,NH Huorantene CT,NY,NH Hexachlorobtadiene CT,NY,NH Hexachlorobtadiene CT,NY,NH Hexachlorobtadiene CT,NY,NH Indeno(1,2,3-ed)pyrene CT,NY,NH Sophorone CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene <	Dibenzofuran	CT,NY,NH
1,3-Dichlorobenzene NY,NH 3,3-Dichlorobenzelme NY,NH 3,3-Dichlorobenzelme CT,NY,NH 2,4-Dichlorophenol CT,NY,NH Dichylphthalate CT,NY,NH 2,4-Dimethylphenol CT,NY,NH 2,4-Dimitrobluene CT,NY,NH 2,4-Dimitrobluene CT,NY,NH 2,6-Dimitrobluene CT,NY,NH 1,5-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NII Fluoranthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobenane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Sophorone CT,NY,NH 2-Methylphenol CT,NY,NH 3-4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	Di-n-butylphthalate	CT,NY,NH
1,4-Dichlorobenzeine NY,NIH 3,3-Dichlorobenzidine CT,NY,NH 2,4-Dichlorophenol CT,NY,NIH Diethylphthalate CT,NY,NIH 2,4-Dimethylphthalate CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrodoluene CT,NY,NH 2,6-Dimitrodoluene CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Fluoranthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorochtane CT,NY,NH Indeno(1,2,3-ed)pyrene CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH N4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH	1,2-Dichlorobenzene	NY,NH
3,3-Dichlorobenzidine CT,NY,NH 2,4-Dichlorophenol CT,NY,NH Dictylphthalate CT,NY,NH 2,4-Dimethylphenol CT,NY,NH Dimethylphthalate CT,NY,NH 2,4-Dinitrobluene CT,NY,NH 2,4-Dinitrotoluene CT,NY,NH 2,6-Dinitrotoluene CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-ed)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH	1,3-Dichlorobenzene	NY,NH
2.4-Dichlorophenol CT,NY,NH Diethylphthalate CT,NY,NH 2.4-Dimethylphenol CT,NY,NH 2.4-Dimitrophenol CT,NY,NH 2.4-Dimitrophenol CT,NY,NH 2.4-Dimitrotoluene CT,NY,NH 2.6-Dimitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1.2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobhane CT,NY,NH Indnot, 2,3-cd)pyrene CT,NY,NH 2-Methylpaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH	1,4-Dichlorobenzene	NY,NH
Diethylphthalate CT,NY,NH 2,4-Dimethylphthalate CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrotoluene CT,NY,NH 2,6-Dimitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH 2-Methylaphthalene CT,NY,NH 2-Methylaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	3,3-Dichlorobenzidine	CT,NY,NH
2,4-DimethylphthalateCT,NY,NH2,4-DinitrophenolCT,NY,NH2,4-DinitrotolueneCT,NY,NH2,6-DinitrotolueneCT,NY,NH2,6-DinitrotolueneCT,NY,NHDi-n-octylphthalateCT,NY,NH1,2-Diphenylhydrazine (as Azobenzene)NY,NHFluorantheneCT,NY,NHFluoreneNY,NHHexachlorobenzeneCT,NY,NHHexachlorobethaneCT,NY,NHIndeno(1,2,3-cd)pyreneCT,NY,NHIsophoroneCT,NY,NH2-MethylnaphthaleneCT,NY,NH2-MethylphenolCT,NY,NHNaphthaleneCT,NY,NHNitrobenzeneCT,NY,NHNitrobenzeneCT,NY,NH2-NitrophenolCT,NY,NH2-NitrophenolCT,NY,NH	2,4-Dichlorophenol	CT,NY,NH
Dimethylphthalate CT,NY,NH 2,4-Dinitrotoluene CT,NY,NH 2,6-Dinitrotoluene CT,NY,NH 2,6-Dinitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Fluorantene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	Diethylphthalate	CT,NY,NH
2,4-Dinitrotoluene CT,NY,NH 2,4-Dinitrotoluene CT,NY,NH 2,6-Dinitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	2,4-Dimethylphenol	CT,NY,NH
2,4-Dinitrotoluene CT,NY,NH 2,6-Dinitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	Dimethylphthalate	CT,NY,NH
CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Fluoranthene NY,NH Hexachlorobenzene MY,NH Hexachlorobutadiene CT,NY,NH Hexachlorothane Indeno(1,2,3-cd)pyrene Isophorone CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH Nitrobenzene CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH Nitrobenzene CT,NY,NH	2,4-Dinitrophenol	CT,NY,NH
Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine (as Azobenzene) NY,NH Fluoranthene CT,NY,NH Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorothane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH Nitrobenzene CT,NY,NH	2,4-Dinitrotoluene	CT,NY,NH
1,2-Diphenylhydrazine (as Azobenzene) Fluoranthene CT,NY,NH Fluoren NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol Additional CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH	2,6-Dinitrotoluene	CT,NY,NH
Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobtadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-ed)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH	Di-n-octylphthalate	CT,NY,NH
Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobtutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-ed)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH CT,NY,NH CT,NY,NH Nitrobenzene CT,NY,NH	1,2-Diphenylhydrazine (as Azobenzene)	NY,NH
Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH	Fluoranthene	CT,NY,NH
Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH CT,NY,NH	Fluorene	NY,NH
Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	Hexachlorobenzene	CT,NY,NH
Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	Hexachlorobutadiene	CT,NY,NH
Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH		
2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	Indeno(1,2,3-cd)pyrene	CT,NY,NH
2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	Isophorone	CT,NY,NH
3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH		
Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	2-Methylphenol	
Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH	• •	
2-Nitrophenol CT,NY,NH		
4-Nitrophenol CT,NY,NH		
	4-Nitrophenol	C1,NY,NH

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270D in Soil		
Pentachlorophenol	CT,NY,NH	
Phenanthrene	CT,NY,NH	
Phenol	CT,NY,NH	
Pyrene	CT,NY,NH	
1,2,4-Trichlorobenzene	CT,NY,NH	
2,4,5-Trichlorophenol	CT,NY,NH	
2,4,6-Trichlorophenol	CT,NY,NH	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2017
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2017
FL	Florida Department of Health	E871027 NELAP	06/30/2017
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2017
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2017

CHAIN OF CUSTODY RECORD

| CL O 3 C 9
| Rev 04.05 12 | L4 | |

East long meadow, MA 01028 39 Spruce Street

Dissolved Metals ***Container Code # of Containers ** Preservation ANALYSIS REQUESTED SO RV Telephone, 978 Project # Email: info@contestlabs.com www.contestlabs.com Company Name: MIESTON + SAM TSTA ANALYTICAL LABORATORY Address:

B = Sodium bisulfate **DW**= drinking water GW= groundwater WW= wastewater T = Na thiosulfate X = Na hydroxide ○ Field Filtered S = Sulfuric Acid C Lab to Filter ***Cont. Code: **Preservation "Matrix Code: A=amber glass M = Methanol N = NitricAcid S=summa can S = soil/solid T-tedlar bag SL = sludge o = Other ST=sterile O = other P=plastic 0=Other Garg lass H=HCL TO B V= via Please use the following codes to let Con-Test know if a specific sample is your project MCP or RCP? H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ○ MCP Form Required O RCP Form Required **Detection Limit Requirements** Cane Cade "Enhanced Data Package" Sade DATA DELIVERY (check all that apply) **XEXCEL** WEBSITE Composite Grab Ź 3 Mas sachusetts: 0.07% %. ₽0< KEMAIL. ろろい 513 Client PO# Berend inc N. 33 Turnaround # Sh 21 80 2 4 Ending 300 **Ormat** 10-Day O FAX Fax# Section Officer Email 100 - 120 C Beginning SE SE Ō HOLD SAMMES BIL 82, BS BIL Ċ Date Time: CENTENNIAL DEIVE Client Sample ID / Description **bate/Time**: 2000 01400 Project Proposal Provided? (for billing purposes) proposal date Project Location: WOUN IDING Sign 17-8 7 K NU Z POWOON, NA Attention: ナームイン 区 (signature) Sampled By: TAE Con-Test Lab ID 9 Relinquisted in . S S S

TURKAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT OTHER Require lab approval 8

WBE/DBE Certified

NELAC & AIHA-LAP, LLC

○ MA State DW Form Required PWSID#

Connecticut:

RUSH

O 172-Hr D 14-Day

Date/Time:

(eceived by: (sighature)

Accredited

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F: 413-525-6405 www.contestlabs.com

Page 1 of 2

Sample Receipt Checklist

CLIENT NAME: Westant	simpson	RECEIVED BY:	W//C_	_DATE: <u>9 /4//6</u>
1) Was the chain(s) of custody re	, elinguished and sigr	ned? Ye	s L No	No COC Incl.
, ,				100 - 100 -
3) Are all the samples in good could not, explain:	ondition?	Ye	s No	
4) How were the samples receive	If not, explain: Are all the samples in good condition? If not, explain: How were the samples received: Ide Direct from Sampling Ambient			
On Ice Direct from Sa	ampling	Ambient	In Cooler(s)	
Were the samples received in Te	mperature Complian	ce of (2-6°C)?	Yes i	No N/A
Temperature °C by Temp blank		Temperature °C	by Temp gun	4/106
5) Are there Dissolved samples f	or the lab to filter?	Ye	s No	
Who was notified	Date	Time		
6) Are there any RUSH or SHORT	THOLDING TIME sai	mples? Ye	sNo	<u> </u>
Who was notified	Date	Time		
		Perr	nission to subco	ontract samples? Yes No
7) Location where samples are store	ed:	, (Wa	lk-in clients only) if not already approved
	09"	Clie	nt Signature:	
8) Do all samples have the prope	er Acid pH: Yes	No	N/A	
·				
	-			- /
THE WAS THE PC. HOTTIED OF ANY DE	screnancies with the	LOU VS THE SAF	nnies: Yes	N/A
				N/A
	ontainers rec			
Co	ontainers rec	eived at C	on-Test	# of containers
1 Liter Amber	ontainers rec	eived at C	on-Test	# of containers + 3 & D
1 Liter Amber 500 mL Amber	ontainers rec	eived at C	on-Test 16 oz amber amber/clear ja	# of containers + 3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber)	ontainers rec	8 oz	on-Test 16 oz amber amber/clear ja	# of containers + 3 & .
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic	ontainers rec	8 02 4 02 2 02	on-Test 16 oz amber amber/clear jai amber/clear jai amber/clear jai	# of containers +-3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	# of containers	8 02 4 02 2 02	on-Test 16 oz amber amber/clear ja amber/clear ja amber/clear ja amber/clear ja	# of containers + 3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	# of containers	8 oz 4 oz 2 oz Pla:	on-Test 16 oz amber amber/clear jar amber/clear jar amber/clear jar stic Bag / Ziploc	# of containers + 3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	# of containers	8 oz 4 oz Pla:	on-Test 16 oz amber 2 amber/clear ja 2 amber/clear ja 3 amber/clear ja 5 tic Bag / Ziploc SOC Kit 6 erchlorate Kit	# of containers + 3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	# of containers	8 oz 4 oz 2 oz Pla:	16 oz amber amber/clear ja amber/clear ja amber/clear ja stic Bag / Ziploc SOC Kit erchlorate Kit ashpoint bottle	# of containers + 3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	# of containers	8 oz 4 oz 2 oz Pla:	16 oz amber amber/clear ja amber/clear ja amber/clear ja stic Bag / Ziploc SOC Kit erchlorate Kit ashpoint bottle	# of containers + 3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	# of containers	Beived at C 8 oz 4 oz 2 oz Pla: FI C anol # 3	16 oz amber amber/clear ja amber/clear ja amber/clear ja stic Bag / Ziploo SOC Kit erchlorate Kit ashpoint bottle other glass jar Other	# of containers + 3

Page 2 of 2

Login Sample Receipt Checklist

(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Answer (True/False)

Question	Answer (True/Fall	se) Comment
	T/F/NA	
The cooler's custody seal, if present, is intact.	NA	
2) The cooler or samples do not appear to have been compromised or tampered with.	ナ	
3) Samples were received on ice.	<u> </u>	
4) Cooler Temperature is acceptable.	T	
5) Cooler Temperature is recorded.	T	4,100
6) COC is filled out in ink and legible.	7	
7) COC is filled out with all pertinent information.	T	
8) Field Sampler's name present on COC.	T	
9) There are no discrepancies between the sample IDs on the container and the COC.	<u> </u>	
10) Samples are received within Holding Time.	T	
11) Sample containers have legible labels.	T	
12) Containers are not broken or leaking.	T	
13) Air Cassettes are not broken/open.	M	
14) Sample collection date/times are provided.	T	
15) Appropriate sample containers are used.	T	
16) Proper collection media used.	T	
17) No headspace sample bottles are completely filled.	T	
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	T	
19) Trip blanks provided if applicable.	"NA	
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	M	
21) Samples do not require splitting or compositing.	T	

Who notified of False statements?

Log-In Technician Initials:

Date/Time: Date/Time:

Doc #277 Rev. 4 August 2013

Page | 1

Weston & Sampson

MicroVision Labs Coal Ash Report, Job # 10125 Client Project#: 2160591.B Client Project Name: Wayland Public Library

Scope of Work:

This report covers the methods and findings of the Coal/Coal Ash analysis that MicroVision Laboratories, Inc. conducted on one (1) soil sample submitted for testing from the Wayland Public Library project. The purpose of this analysis was to detect and document any coal, coal ash or wood ash that may be present in the submitted soil sample by use of a combination of microscopy techniques including SEM/EDS, PLM, and macroscopic inspection.

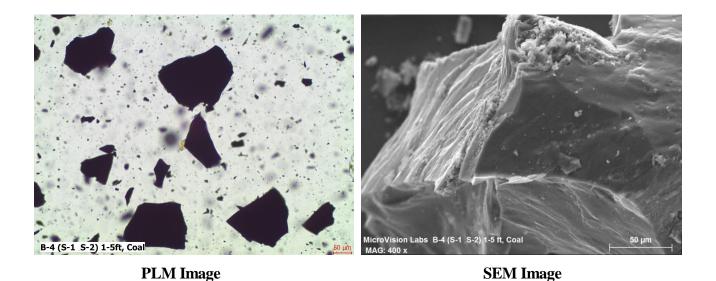
Methods:

The sample was dried and examined by eye and under the stereomicroscope for any suspect dark components to the soil. Dark suspect particles were separated from the soil sample and prepared for examination by Polarized Light Microscopy (PLM) and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM/EDS).

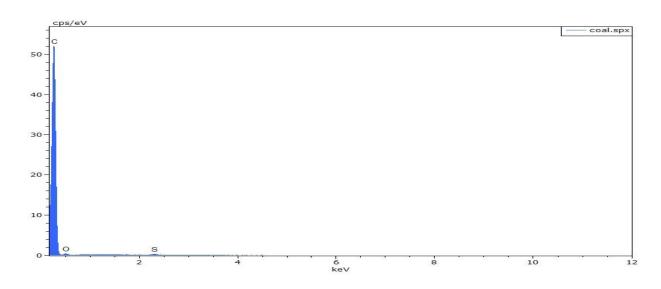
For the PLM examination, the suspect particle types detected in the sample were ground in a mortar and pestle, mounted on glass slides in immersion oil (n=1.515) and covered with glass cover slips. These sample particles were then examined at various magnifications and digital images were taken.

For the SEM examination, the suspect particle types were mounted on an aluminum analysis stub with double sided adhesive tape, coated with evaporated graphite and examined under the SEM by EDS to obtain elemental data in the form of EDS spectra. Digital images were taken of the sample particles at various magnifications with the SEM.

Findings:

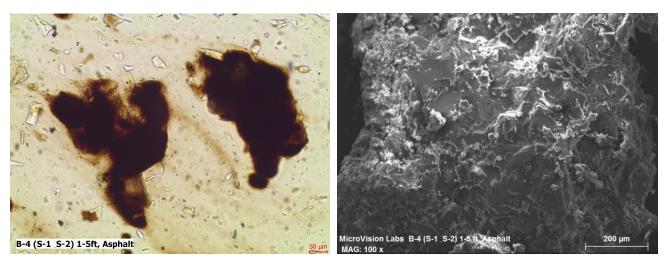

The following pages display the data for each particle type detected in the sample for this project. Each page contains a PLM image, SEM image, and EDS spectrum for the particle types detected for this sample as well as particle type descriptions and observations.

Page 2 10/10/2016

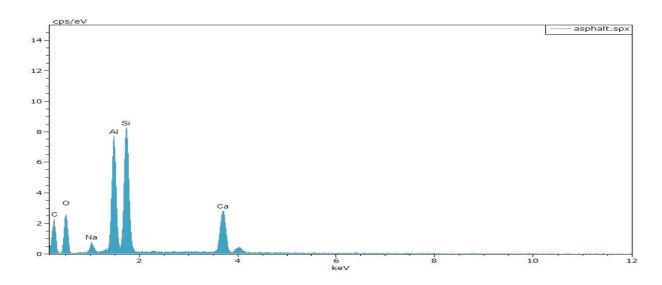

Sample: B-4 (S-1 & S-2) 1-5 ft.

Number of Suspect Particle Types: Two (2)

Coal: This particle type consisted of eight (8) shiny, black grains approximately 1-4mm in diameter. The PLM examination indicated this particle type to be consistent with coal. The PLM and SEM images of this particle type show the angular edges and typical conchoidal fractures found in coal.



The EDS spectrum, shown below, confirms that this particle type is coal. The analysis for this particle shows concentrations of carbon, oxygen, and sulfur.


MicroVision Laboratories, Inc. 187 Billerica Road, Chelmsford, MA 01824 Phone: (978) 250-9909 Fax: (978) 250-9901 Email: Sales@MicroVisionLabs.com www.MicroVisionLabs.com Page 3 10/10/2016

Asphalt: This particle type consisted of twenty (20) ductile, black grains approximately 1-6mm in diameter. These grains had mineral matter embedded in and stuck to them. During the PLM examination, these particles slowly dissolved in the mounting oil which is a typical characteristic of asphalt. The PLM image shows the dissolving asphalt particles, and the SEM image illustrates the morphology of asphalt with the embedded mineral grains.

PLM Image SEM Image

The EDS spectrum, shown below, indicates this particle type is asphalt. The analysis for this particle shows concentrations of carbon, oxygen, sodium, aluminum, silicon, and calcium.

Page 4 10/10/2016

Results Summary Table:

Sample Name	Material Detected
B-4 (S-1 & S-2) 1-5 ft.	Coal (light), Asphalt (moderate)

The concentrations of the particle types detected in this sample are listed in parenthesis in the table above and are based on the number of particles found and the relative difficultly in finding them. The concentration information is listed for informational purposes only and has no bearing on exemption status.

Please let us know if you have any questions about this analysis or if there is anything else we can do for you.

Sincerely,

Denise Bergstrom Analytical Microscopist Page 5 10/10/2016

Pho	Analytical Report Requested: YES	Hazardous Contaminants: YES / NO If Y	· c	Johann Hell 10/3/16 9:	Relinquished By: Date/Time	12)	11)	10)	9)	8)	7)	6)	5)	4)	3)	2)	1) B-4 (S-1 & S-2) 1-5 ft.	Sample ID Collecte Date	d		LABORATORIES, INC.)	0)
M 187 Bill Phone 978-250-9909	NO NO	If Yes, please list:		9:12An and	Received By:													Sampler Initials	's	Email: 1	Fax	Phone:		Billing A	Client: \		
er c		ist:	-	and Chypull	ed By:												<	Coal Ash Test		Email: ricciarf@wseinc.com		97		Billing Address: 5 Centennial Drive	Client: Weston & Sampson	Cli	Chain Of Custody
ca Road													1					Lead Paint		vseinc.		978-532-1900	Peabody	5 Cente	Samps	ent Info	10
a Road, Chelmsford a Road, Chelmsford ax 978-250-9901				01810	Date									8				SEM/EDS		com		1900	, MA 01	nnial Dr	on	Client Information	Cus
microVision Laboratories, inc. Illerica Road, Chelmsford, MA 01824 9 Fax 978-250-9901 Toll Free 1-877-250-9909 microvisionlabs.com				aisc	Date/Time													PLM/Light Microscopy					960	ive		on .	tody
MA 018:																		Soot ID	71								
24 1-877-2																		Dust ID	equest		PO#:	Project	Project	Project	Project Name:		
50-9909					Turn Around													Unknow Mat'l ID	Requested Analyses			Manage	Project Number:	Project Location:	Name:		
					buno.													FTIR	ses			r: Chris	1		Wayl	Proje	
					Time and Notes:													Polished Cross Section				Project Manager: Christopher Palmer	2160591.B	195 Main Street, Wayland,	Wayland Public Library	Project Information	
					nd Note													Particle Size Analysis				almer		et, Wayla	ic Librar	mation	10125
					S:													Wildfire						and, MA	Y		O
																		Other									